OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 8985–8995

In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope

Nam Hyun Cho, Jeong Hun Jang, Woonggyu Jung, and Jeehyun Kim  »View Author Affiliations

Optics Express, Vol. 22, Issue 8, pp. 8985-8995 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3234 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We developed an augmented-reality system that combines optical coherence tomography (OCT) with a surgical microscope. By sharing the common optical path in the microscope and OCT, we could simultaneously acquire OCT and microscope views. The system was tested to identify the middle-ear and inner-ear microstructures of a mouse. Considering the probability of clinical application including otorhinolaryngology, diseases such as middle-ear effusion were visualized using in vivo mouse and OCT images simultaneously acquired through the eyepiece of the surgical microscope during surgical manipulation using the proposed system. This system is expected to realize a new practical area of OCT application.

© 2014 Optical Society of America

OCIS Codes
(110.4500) Imaging systems : Optical coherence tomography
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography
(170.4940) Medical optics and biotechnology : Otolaryngology

ToC Category:
Imaging Systems

Original Manuscript: January 30, 2014
Revised Manuscript: March 20, 2014
Manuscript Accepted: March 21, 2014
Published: April 7, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Nam Hyun Cho, Jeong Hun Jang, Woonggyu Jung, and Jeehyun Kim, "In vivo imaging of middle-ear and inner-ear microstructures of a mouse guided by SD-OCT combined with a surgical microscope," Opt. Express 22, 8985-8995 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. W. Casselman, “Diagnostic imaging in clinical neuro-otology,” Curr. Opin. Neurol. 15(1), 23–30 (2002). [PubMed]
  2. L. B. Minor, J. P. Carey, P. D. Cremer, L. R. Lustig, S. O. Streubel, M. J. Ruckenstein, “Dehiscence of bone overlying the superior canal as a cause of apparent conductive hearing loss,” Otol. Neurotol. 24(2), 270–278 (2003). [CrossRef] [PubMed]
  3. J. E. McClay, R. Tandy, K. Grundfast, S. G. Choi, G. Vezina, G. Zalzal, A. Willner, “Major and minor temporal bone abnormalities in children with and without congenital sensorineural hearing loss,” Arch. Otolaryngol. Head Neck Surg. 128(6), 664–671 (2002). [CrossRef] [PubMed]
  4. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, et, “Optical coherence tomography,” Science 254(5035), 1178–1181 (1991). [CrossRef] [PubMed]
  5. I. Grulkowski, M. Gora, M. Szkulmowski, I. Gorczynska, D. Szlag, S. Marcos, A. Kowalczyk, M. Wojtkowski, “Anterior segment imaging with Spectral OCT system using a high-speed CMOS camera,” Opt. Express 17(6), 4842–4858 (2009). [CrossRef] [PubMed]
  6. J. Kim, B. S. Sohn, “Real-time retinal imaging with a parallel optical coherence tomography using a CMOS smart array detector,” J. Korean Phys. Soc. 51, 1787–1791 (2007). [CrossRef]
  7. T. Gambichler, G. Moussa, M. Sand, D. Sand, P. Altmeyer, K. Hoffmann, “Applications of optical coherence tomography in dermatology,” J. Dermatol. Sci. 40(2), 85–94 (2005). [CrossRef] [PubMed]
  8. W. G. Jung, J. Zhang, J. R. Chung, P. Wilder-Smith, M. Brenner, J. S. Nelson, Z. P. Chen, “Advances in oral cancer detection using optical coherence tomography,” Ieee J Sel Top Quant 11(4), 811–817 (2005). [CrossRef]
  9. N. H. Cho, U. Jung, H. I. Kwon, H. Jeong, J. Kim, “Development of SD-OCT for Imaging the in vivo Human Tympanic Membrane,” J Opt Soc Korea 15(1), 74–77 (2011). [CrossRef]
  10. H. M. Subhash, V. Davila, H. Sun, A. T. Nguyen-Huynh, A. L. Nuttall, R. K. Wang, “Volumetric in vivo imaging of intracochlear microstructures in mice by high-speed spectral domain optical coherence tomography,” J. Biomed. Opt. 15(3), 036024 (2010). [CrossRef] [PubMed]
  11. C. T. Nguyen, S. R. Robinson, W. Jung, M. A. Novak, S. A. Boppart, J. B. Allen, “Investigation of bacterial biofilm in the human middle ear using optical coherence tomography and acoustic measurements,” Hear. Res. 301, 193–200 (2013). [CrossRef] [PubMed]
  12. C. T. Nguyen, W. Jung, J. Kim, E. J. Chaney, M. Novak, C. N. Stewart, S. A. Boppart, “Noninvasive in vivo optical detection of biofilm in the human middle ear,” Proc. Natl. Acad. Sci. U.S.A. 109(24), 9529–9534 (2012). [CrossRef] [PubMed]
  13. B. J. F. Wong, J. F. de Boer, B. H. Park, Z. P. Chen, J. S. Nelson, “Optical coherence tomography of the rat cochlea,” J. Biomed. Opt. 5(4), 367–370 (2000). [CrossRef] [PubMed]
  14. B. J. F. Wong, Y. H. Zhao, M. Yamaguchi, N. Nassif, Z. P. Chen, J. F. De Boer, “Imaging the internal structure of the rat cochlea using optical coherence tomography at 0.827 mu m and 1.3 mu m,” Otolaryng Head Neck 130(3), 334–338 (2004). [CrossRef]
  15. E. W. Chang, J. T. Cheng, C. Röösli, J. B. Kobler, J. J. Rosowski, S. H. Yun, “Simultaneous 3D imaging of sound-induced motions of the tympanic membrane and middle ear ossicles,” Hear. Res. 304, 49–56 (2013). [CrossRef] [PubMed]
  16. S. S. Gao, P. D. Raphael, R. Wang, J. Park, A. P. Xia, B. E. Applegate, J. S. Oghalai, “In vivo vibrometry inside the apex of the mouse cochlea using spectral domain optical coherence tomography,” Biomed. Opt. Express 4(2), 230–240 (2013). [CrossRef] [PubMed]
  17. H. M. Subhash, N. Choudhury, F. Y. Chen, R. K. K. Wang, S. L. Jacques, A. L. Nuttall, “Depth-resolved dual-beamlet vibrometry based on Fourier domain low coherence interferometry,” J. Biomed. Opt. 18(3), 036003 (2013). [CrossRef] [PubMed]
  18. J. P. Ehlers, Y. K. Tao, S. Farsiu, R. Maldonado, J. A. Izatt, C. A. Toth, “Integration of a Spectral Domain Optical Coherence Tomography System into a Surgical Microscope for Intraoperative Imaging,” Invest. Ophthalmol. Vis. Sci. 52(6), 3153–3159 (2011). [CrossRef] [PubMed]
  19. Y. K. K. Tao, J. P. Ehlers, C. A. Toth, J. A. Izatt, “Intraoperative spectral domain optical coherence tomography for vitreoretinal surgery,” Opt. Lett. 35(20), 3315–3317 (2010). [CrossRef] [PubMed]
  20. C. Shi, B. C. Becker, and C. N. Riviere, “Inexpensive monocular pico-projector-based augmented reality display for surgical microscope,” in Computer-Based Medical Systems (CBMS),201225th International Symposium on(IEEE, 2012), pp. 1–6. [CrossRef]
  21. T. Sielhorst, M. Feuerstein, N. Navab, “Advanced Medical Displays: A Literature Review of Augmented Reality,” J Disp Technol 4(4), 451–467 (2008). [CrossRef]
  22. M. Jeon, J. Kim, U. Jung, C. Lee, W. Jung, S. A. Boppart, “Full-range k-domain linearization in spectral-domain optical coherence tomography,” Appl. Opt. 50(8), 1158–1163 (2011). [CrossRef] [PubMed]
  23. R. C. Holder, D. J. Kirse, A. K. Evans, T. R. Peters, K. A. Poehling, W. E. Swords, S. D. Reid, “One third of middle ear effusions from children undergoing tympanostomy tube placement had multiple bacterial pathogens,” BMC Pediatr. 12(1), 87 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (3181 KB)     
» Media 2: MOV (1246 KB)     
» Media 3: MOV (3118 KB)     
» Media 4: MOV (1797 KB)     
» Media 5: MOV (1171 KB)     
» Media 6: MOV (2032 KB)     
» Media 7: MOV (3339 KB)     
» Media 8: MOV (1874 KB)     
» Media 9: MOV (1388 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited