OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9508–9516

Copper nanorod array assisted silicon waveguide polarization beam splitter

Sangsik Kim and Minghao Qi  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 9508-9516 (2014)
http://dx.doi.org/10.1364/OE.22.009508


View Full Text Article

Enhanced HTML    Acrobat PDF (1979 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present the design of a three-dimensional (3D) polarization beam splitter (PBS) with a copper nanorod array placed between two silicon waveguides. The localized surface plasmon resonance (LSPR) of a metal nanorod array selectively cross-couples transverse electric (TE) mode to the coupler waveguide, while transverse magnetic (TM) mode passes through the original input waveguide without coupling. An ultra-compact and broadband PBS compared to all-dielectric devices is achieved with the LSPR. The output ports of waveguides are designed to support either TM or TE mode only to enhance the extinction ratios. Compared to silver, copper is fully compatible with complementary metal-oxide-semiconductor (CMOS) technology.

© 2014 Optical Society of America

OCIS Codes
(230.3120) Optical devices : Integrated optics devices
(250.5403) Optoelectronics : Plasmonics
(130.5440) Integrated optics : Polarization-selective devices

ToC Category:
Integrated Optics

History
Original Manuscript: February 25, 2014
Revised Manuscript: April 2, 2014
Manuscript Accepted: April 2, 2014
Published: April 11, 2014

Citation
Sangsik Kim and Minghao Qi, "Copper nanorod array assisted silicon waveguide polarization beam splitter," Opt. Express 22, 9508-9516 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-9508


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Fukuda, K. Yamada, T. Tsuchizawa, T. Watanabe, H. Shinojima, S. Itabashi, “Silicon photonic circuit with polarization diversity,” Opt. Express 16, 4872–4880 (2008). [CrossRef] [PubMed]
  2. D. Dai, L. Liu, S. Gao, D. X. Xu, S. He, “Polarization management for silicon photonic integrated circuits,” Laser Photon. Rev. 7, 303–328 (2013). [CrossRef]
  3. T. Pfau, R. Peveling, J. Hauden, N. Grossard, H. Porte, Y. Achiam, S. Hoffmann, S. K. Ibrahim, O. Adamczyk, S. Bhandare, D. Sandel, M. Porrmann, R. Noe, “Coherent digital polarization diversity receiver for real-time polarization-multiplexed QPSK transmission at 2.8 Gb/s,” IEEE Photon. Technol. Lett. 19, 1988–1990 (2007). [CrossRef]
  4. T. Barwicz, M. R. Watts, M. A. Popović, P. T. Rakich, L. Socci, F. X. Kärtner, E. P. Ippen, H. I. Smith, “Polarization-transparent microphotonic devices in the strong confinement limit,” Nat. Photonics 1, 57–60 (2006). [CrossRef]
  5. T. W. Ebbesen, C. Genet, S. I. Bozhevolnyi, “Surface-plasmon circuitry,” Phys. Today 61, 44 (2008). [CrossRef]
  6. R. Zia, M. D. Selker, P. B. Catrysse, M. L. Brongersma, “Geometries and materials for subwavelength surface plasmon modes,” J. Opt. Soc. Am. A 21, 2442–2446 (2004). [CrossRef]
  7. S. Kim, Y. Xuan, V. P. Drachev, L. T. Varghese, L. Fan, M. Qi, K. J. Webb, “Nanoimprinted plasmonic nanocavity arrays,” Opt. Express 21, 15081–15089 (2013). [CrossRef] [PubMed]
  8. V. J. Sorger, R. F. Oulton, J. Yao, G. Bartal, X. Zhang, “Plasmonic Fabry-Pérot nanocavity,” Nano Lett. 9, 3489 (2009). [CrossRef] [PubMed]
  9. L. T. Varghese, L. Fan, Y. Xuan, C. Tansarawiput, S. Kim, M. Qi, “Resistless nanoimprinting in metal for plasmonic nanostructures,” Small 9, 3778–3783 (2013). [CrossRef] [PubMed]
  10. R. F. Oulton, V. J. Sorger, D. Genov, D. Pile, X. Zhang, “A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation,” Nat. Photonics 2, 496–500 (2008). [CrossRef]
  11. Y. Bian, Z. Zheng, X. Zhao, Y. Su, L. Liu, J. Liu, J. Zhu, T. Zhou, “Guiding of long-range hybrid plasmon polariton in a coupled nanowire array at deep-subwavelength scale,” IEEE Photon. Technol. Lett. 24, 1279–1281 (2012). [CrossRef]
  12. Y. Bian, Q. Gong, “Low-loss light transport at the subwavelength scale in silicon nano-slot based symmetric hybrid plasmonic waveguiding schemes,” Opt. Express 21, 23907–23920 (2013). [CrossRef] [PubMed]
  13. X. Guan, H. Wu, Y. Shi, L. Wosinski, D. Dai, “Ultracompact and broadband polarization beam splitter utilizing the evanescent coupling between a hybrid plasmonic waveguide and a silicon nanowire,” Opt. Lett. 38, 3005–3008 (2013). [CrossRef] [PubMed]
  14. Q. Tan, X. Huang, W. Zhou, K. Yang, “A plasmonic based ultracompact polarization beam splitter on silicon-on-insulator waveguides,” Sci. Rep.3 (2013). [CrossRef]
  15. E. D. Palik, Handbook of Optical Constants of Solids, vol. 3 (Academic press, 1998).
  16. D. M. Pozar, Microwave Engineering (Wiley, 2009).
  17. C. Tserkezis, N. Stefanou, “Calculation of waveguide modes in linear chains of metallic nanorods,” J. Opt. Soc. Am. B 29, 827–832 (2012). [CrossRef]
  18. A. Sure, T. Dillon, J. Murakowski, C. Lin, D. Pustai, D. Prather, “Fabrication and characterization of three-dimensional silicon tapers,” Opt. Express 11, 3555–3561 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited