OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 8 — Apr. 21, 2014
  • pp: 9809–9819

A circuit model for plasmonic resonators

Di Zhu, Michel Bosman, and Joel K. W. Yang  »View Author Affiliations


Optics Express, Vol. 22, Issue 8, pp. 9809-9819 (2014)
http://dx.doi.org/10.1364/OE.22.009809


View Full Text Article

Enhanced HTML    Acrobat PDF (1488 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Simple circuit models provide valuable insight into the properties of plasmonic resonators. Yet, it is unclear how the circuit elements can be extracted and connected in the model in an intuitive and accurate manner. Here, we present a detailed treatment for constructing such circuits based on energy and charge oscillation considerations. The accuracy and validity of this approach was demonstrated for a gold nanorod, and extended for a split-ring resonator with varying gap sizes, yielding good intuitive and quantitative agreement with full electromagnetic simulations.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(260.5740) Physical optics : Resonance
(350.4990) Other areas of optics : Particles
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Plasmonics

History
Original Manuscript: February 25, 2014
Revised Manuscript: April 2, 2014
Manuscript Accepted: April 3, 2014
Published: April 16, 2014

Citation
Di Zhu, Michel Bosman, and Joel K. W. Yang, "A circuit model for plasmonic resonators," Opt. Express 22, 9809-9819 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-8-9809


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Engheta, A. Salandrino, A. Alù, “Circuit Elements at Optical Frequencies: Nanoinductors, Nanocapacitors, and Nanoresistors,” Phys. Rev. Lett. 95(9), 095504 (2005). [CrossRef] [PubMed]
  2. N. Engheta, “Circuits with light at nanoscales: optical nanocircuits inspired by metamaterials,” Science 317(5845), 1698–1702 (2007). [CrossRef] [PubMed]
  3. A. Alù, N. Engheta, “Input Impedance, Nanocircuit Loading, and Radiation Tuning of Optical Nanoantennas,” Phys. Rev. Lett. 101(4), 043901 (2008). [CrossRef] [PubMed]
  4. A. Alù, N. Engheta, “Tuning the scattering response of optical nanoantennas with nanocircuit loads,” Nat. Photonics 2(5), 307–310 (2008). [CrossRef]
  5. A. Alù, M. Young, N. Engheta, “Design of nanofilters for optical nanocircuits,” Phys. Rev. B 77(14), 144107 (2008). [CrossRef]
  6. M. G. Silveirinha, A. Alù, J. Li, N. Engheta, “Nanoinsulators and nanoconnectors for optical nanocircuits,” J. Appl. Phys. 103(6), 064305 (2008). [CrossRef]
  7. A. Alù, N. Engheta, “All Optical Metamaterial Circuit Board at the Nanoscale,” Phys. Rev. Lett. 103(14), 143902 (2009). [CrossRef] [PubMed]
  8. Y. Sun, B. Edwards, A. Alù, N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11(3), 208–212 (2012). [CrossRef] [PubMed]
  9. M. Staffaroni, J. Conway, S. Vedantam, J. Tang, E. Yablonovitch, “Circuit analysis in metal-optics,” Photon. Nanostructures 10(1), 166–176 (2012). [CrossRef]
  10. H. Caglayan, S.-H. Hong, B. Edwards, C. R. Kagan, N. Engheta, “Near-Infrared Metatronic Nanocircuits by Design,” Phys. Rev. Lett. 111(7), 073904 (2013). [CrossRef] [PubMed]
  11. H. Duan, A. I. Fernández-Domínguez, M. Bosman, S. A. Maier, J. K. Yang, “Nanoplasmonics: classical down to the nanometer scale,” Nano Lett. 12(3), 1683–1689 (2012). [CrossRef] [PubMed]
  12. M. Bosman, E. Ye, S. F. Tan, C. A. Nijhuis, J. K. W. Yang, R. Marty, A. Mlayah, A. Arbouet, C. Girard, M. Y. Han, “Surface Plasmon Damping Quantified with an Electron Nanoprobe,” Sci. Rep. 3, 1312 (2013). [CrossRef] [PubMed]
  13. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, 1999).
  14. C. F. Bohren and D. R. Huffman, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  15. J. W. Nilsson and S. A. Riedel, Electric Circuits, 9th ed. (Prentice Hall, 2011).
  16. F. Wang, Y. R. Shen, “General Properties of Local Plasmons in Metal Nanostructures,” Phys. Rev. Lett. 97(20), 206806 (2006). [CrossRef] [PubMed]
  17. P. B. Johnson, R. W. Christy, “Optical Constants of Noble Metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  18. S. A. Maier, Plasmonics: Fundamentals and Applications, 1st ed. (Springer, 2007).
  19. C. P. Huang, X. G. Yin, H. Huang, Y. Y. Zhu, “Study of plasmon resonance in a gold nanorod with an LC circuit model,” Opt. Express 17(8), 6407–6413 (2009). [CrossRef] [PubMed]
  20. J. B. Pendry, A. J. Holden, D. J. Robbins, W. J. Stewart, “Magnetism from conductors and enhanced nonlinear phenomena,” IEEE Trans. Microw. Theory 47(11), 2075–2084 (1999). [CrossRef]
  21. R. A. Shelby, D. R. Smith, S. Schultz, “Experimental verification of a negative index of refraction,” Science 292(5514), 77–79 (2001). [CrossRef] [PubMed]
  22. A. W. Clark, A. Glidle, D. R. S. Cumming, J. M. Cooper, “Plasmonic Split-Ring Resonators as Dichroic Nanophotonic DNA Biosensors,” J. Am. Chem. Soc. 131(48), 17615–17619 (2009). [CrossRef] [PubMed]
  23. E. Cubukcu, S. Zhang, Y. S. Park, G. Bartal, X. Zhang, “Split ring resonator sensors for infrared detection of single molecular monolayers,” Appl. Phys. Lett. 95(4), 043113 (2009). [CrossRef]
  24. A. Pors, M. Willatzen, O. Albrektsen, S. I. Bozhevolnyi, “From plasmonic nanoantennas to split-ring resonators: tuning scattering strength,” J. Opt. Soc. Am. B 27(8), 1680–1687 (2010). [CrossRef]
  25. O. Sydoruk, E. Tatartschuk, E. Shamonina, L. Solymar, “Analytical formulation for the resonant frequency of split rings,” J. Appl. Phys. 105(1), 014903 (2009). [CrossRef]
  26. M. Amin, M. Farhat, H. Baǧcı, “A dynamically reconfigurable Fano metamaterial through graphene tuning for switching and sensing applications,” Sci. Rep. 3, 2105 (2013). [CrossRef] [PubMed]
  27. B. Willingham, S. Link, “A Kirchhoff solution to plasmon hybridization,” Appl. Phys. B 113(4), 519–525 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited