OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10221–10232

Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging

Ming Zhao, Yu Li, and Leilei Peng  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10221-10232 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2978 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a novel excitation-emission multiplexed fluorescence lifetime microscopy (FLIM) method that surpasses current FLIM techniques in multiplexing capability. The method employs Fourier multiplexing to simultaneously acquire confocal fluorescence lifetime images of multiple excitation wavelength and emission color combinations at 44,000 pixels/sec. The system is built with low-cost CW laser sources and standard PMTs with versatile spectral configuration, which can be implemented as an add-on to commercial confocal microscopes. The Fourier lifetime confocal method allows fast multiplexed FLIM imaging, which makes it possible to monitor multiple biological processes in live cells. The low cost and compatibility with commercial systems could also make multiplexed FLIM more accessible to biological research community.

© 2014 Optical Society of America

OCIS Codes
(170.2520) Medical optics and biotechnology : Fluorescence microscopy
(170.6280) Medical optics and biotechnology : Spectroscopy, fluorescence and luminescence

ToC Category:

Original Manuscript: February 28, 2014
Revised Manuscript: April 14, 2014
Manuscript Accepted: April 14, 2014
Published: April 21, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Ming Zhao, Yu Li, and Leilei Peng, "Parallel excitation-emission multiplexed fluorescence lifetime confocal microscopy for live cell imaging," Opt. Express 22, 10221-10232 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. A. Periasamy and R. M. Clegg, eds., FLIM Microscopy in Biology and Medicine (CRC, 2009).
  2. D. U. Li, J. Arlt, J. Richardson, R. Walker, A. Buts, D. Stoppa, E. Charbon, R. Henderson, “Real-time fluorescence lifetime imaging system with a 32 × 32 013μm CMOS low dark-count single-photon avalanche diode array,” Opt. Express 18(10), 10257–10269 (2010). [CrossRef] [PubMed]
  3. D. D. U. Li, J. Arlt, D. Tyndall, R. Walker, J. Richardson, D. Stoppa, E. Charbon, R. K. Henderson, “Video-rate fluorescence lifetime imaging camera with CMOS single-photon avalanche diode arrays and high-speed imaging algorithm,” J. Biomed. Opt. 16(9), 096012 (2011). [CrossRef] [PubMed]
  4. A. Esposito, H. C. Gerritsen, T. Oggier, F. Lustenberger, F. S. Wouters, “Innovating lifetime microscopy: a compact and simple tool for life sciences, screening, and diagnostics,” J. Biomed. Opt. 11(3), 034016 (2006). [CrossRef] [PubMed]
  5. M. J. Cole, J. Siegel, S. E. D. Webb, R. Jones, K. Dowling, P. M. W. French, M. J. Lever, L. O. D. Sucharov, M. A. A. Neil, R. Juskaitis, T. Wilson, “Whole-field optically sectioned fluorescence lifetime imaging,” Opt. Lett. 25(18), 1361–1363 (2000). [CrossRef] [PubMed]
  6. D. M. Grant, J. McGinty, E. J. McGhee, T. D. Bunney, D. M. Owen, C. B. Talbot, W. Zhang, S. Kumar, I. Munro, P. M. P. Lanigan, G. T. Kennedy, C. Dunsby, A. I. Magee, P. Courtney, M. Katan, M. A. A. Neil, P. M. W. French, “High speed optically sectioned fluorescence lifetime imaging permits study of live cell signaling events,” Opt. Express 15(24), 15656–15673 (2007). [CrossRef] [PubMed]
  7. K. Greger, M. J. Neetz, E. G. Reynaud, E. H. K. Stelzer, “Three-dimensional fluorescence lifetime imaging with a single plane illumination microscope provides an improved signal to noise ratio,” Opt. Express 19(21), 20743–20750 (2011). [CrossRef] [PubMed]
  8. P. T. C. So, T. French, W. M. Yu, K. M. Berland, C. Y. Dong, E. Gratton, “Time-resolved fluorescence microscopy using two-photon excitation,” Bioimaging 3(2), 49–63 (1995). [CrossRef]
  9. W. Becker, A. Bergmann, M. A. Hink, K. König, K. Benndorf, C. Biskup, “Fluorescence lifetime imaging by time-correlated single-photon counting,” Microsc. Res. Tech. 63(1), 58–66 (2004). [CrossRef] [PubMed]
  10. A. Elder, S. Schlachter, C. F. Kaminski, “Theoretical investigation of the photon efficiency in frequency-domain fluorescence lifetime imaging microscopy,” J. Opt. Soc. Am. A 25(2), 452–462 (2008). [CrossRef] [PubMed]
  11. M. J. Booth, T. Wilson, “Low-cost, frequency-domain, fluorescence lifetime confocal microscopy,” J. Microsc. 214(1), 36–42 (2004). [CrossRef] [PubMed]
  12. R. A. Colyer, C. Lee, E. Gratton, “A novel fluorescence lifetime imaging system that optimizes photon efficiency,” Microsc. Res. Tech. 71(3), 201–213 (2008). [CrossRef] [PubMed]
  13. T. W. J. Gadella, T. M. Jovin, R. M. Clegg, “Fluorescengce lifetime imaging microscopy (FLIM) - spatial resolution of microstructures on the nanosecond time-scale,” Biophys. Chem. 48(2), 221–239 (1993). [CrossRef]
  14. Q. S. Hanley, V. Subramaniam, D. J. Arndt-Jovin, T. M. Jovin, “Fluorescence lifetime imaging: multi-point calibration, minimum resolvable differences, and artifact suppression,” Cytometry 43(4), 248–260 (2001). [CrossRef] [PubMed]
  15. H. T. Chen, E. Gratton, “A practical implementation of multifrequency widefield frequency-domain fluorescence lifetime imaging microscopy,” Microsc. Res. Tech. 76(3), 282–289 (2013). [CrossRef] [PubMed]
  16. P. Herman, B. P. Maliwal, H. J. Lin, J. R. Lakowicz, “Frequency-domain fluorescence microscopy with the LED as a light source,” J. Microsc. 203(2), 176–181 (2001). [CrossRef] [PubMed]
  17. D. M. Owen, E. Auksorius, H. B. Manning, C. B. Talbot, P. A. A. de Beule, C. Dunsby, M. A. A. Neil, P. M. W. French, “Excitation-resolved hyperspectral fluorescence lifetime imaging using a UV-extended supercontinuum source,” Opt. Lett. 32(23), 3408–3410 (2007). [CrossRef] [PubMed]
  18. D. S. Elson, I. Munro, J. Requejo-Isidro, J. McGinty, C. Dunsby, N. Galletly, G. W. Stamp, M. A. A. Neil, M. J. Lever, P. A. Kellett, A. Dymoke-Bradshaw, J. Hares, P. M. W. French, “Real-time time-domain fluorescence lifetime imaging including single-shot acquisition with a segmented optical image intensifier,” New J. Phys. 6, 180 (2004). [CrossRef]
  19. F. Fereidouni, K. Reitsma, H. C. Gerritsen, “High speed multispectral fluorescence lifetime imaging,” Opt. Express 21(10), 11769–11782 (2013). [CrossRef] [PubMed]
  20. R. A. Colyer, O. H. W. Siegmund, A. S. Tremsin, J. V. Vallerga, S. Weiss, X. Michalet, “Phasor imaging with a widefield photon-counting detector,” J. Biomed. Opt. 17(1), 016008 (2012). [CrossRef] [PubMed]
  21. T. A. Laurence, X. X. Kong, M. Jäger, S. Weiss, “Probing structural heterogeneities and fluctuations of nucleic acids and denatured proteins,” Proc. Natl. Acad. Sci. U.S.A. 102(48), 17348–17353 (2005). [CrossRef] [PubMed]
  22. K. Carlsson, A. Liljeborg, “Confocal fluorescence microscopy using spectral and lifetime information to simultaneously record four fluorophores with high channel separation,” J. Microsc. 185(1), 37–46 (1997). [CrossRef]
  23. K. Carlsson, A. Liljeborg, “Simultaneous confocal lifetime imaging of multiple fluorophores using the intensity-modulated multiple-wavelength scanning (IMS) technique,” J. Microsc. 191(2), 119–127 (1998). [CrossRef] [PubMed]
  24. M. Zhao, L. Peng, “Multiplexed fluorescence lifetime measurements by frequency-sweeping Fourier spectroscopy,” Opt. Lett. 35(17), 2910–2912 (2010). [CrossRef] [PubMed]
  25. M. Zhao, R. Huang, L. L. Peng, “Quantitative multi-color FRET measurements by Fourier lifetime excitation-emission matrix spectroscopy,” Opt. Express 20(24), 26806–26827 (2012). [CrossRef] [PubMed]
  26. A. L. Oldenburg, J. J. Reynolds, D. L. Marks, S. A. Boppart, “Fast-Fourier-domain delay line for in vivo optical coherence tomography with a polygonal scanner,” Appl. Opt. 42(22), 4606–4611 (2003). [CrossRef] [PubMed]
  27. J. R. Lakowicz, “Color effects and background fluorescence,” in Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
  28. I. S. S. Inc, “Lifetime data of selected fluorophores”, retrieved http://www.iss.com/resources/reference/data_tables/LifetimeDataFluorophores.html .
  29. M. A. Digman, V. R. Caiolfa, M. Zamai, E. Gratton, “The phasor approach to fluorescence lifetime imaging analysis,” Biophys. J. 94(2), L14–L16 (2008). [CrossRef] [PubMed]
  30. H. Holthöfer, “Lectin binding sites in kidney. a comparative study of 14 animal species,” J. Histochem. Cytochem. 31(4), 531–537 (1983). [CrossRef] [PubMed]
  31. K. D. Niswender, S. M. Blackman, L. Rohde, M. A. Magnuson, D. W. Piston, “Quantitative imaging of Green Fluorescent Protein in cultured cells: comparison of microscopic techniques, use in fusion proteins and detection limits,” J. Microsc. 180(2), 109–116 (1995).
  32. A. Furtado, R. Henry, “Measurement of green fluorescent protein concentration in single cells by image analysis,” Anal. Biochem. 310(1), 84–92 (2002). [CrossRef] [PubMed]
  33. J. R. Lakowicz, Principles of Fluorescence Spectroscopy, 3rd ed. (Springer, 2006).
  34. S.-E. Kim, H. Huang, M. Zhao, X. Zhang, A. Zhang, M. V. Semonov, B. T. MacDonald, X. Zhang, J. G. Abreu, L. Peng, X. He, “Wnt stabilization of β-catenin reveals principles for morphogen receptor-scaffold assemblies,” Science 340(6134), 867–870 (2013). [CrossRef] [PubMed]
  35. O. M. Subach, I. S. Gundorov, M. Yoshimura, F. V. Subach, J. Zhang, D. Grüenwald, E. A. Souslova, D. M. Chudakov, V. V. Verkhusha, “Conversion of red fluorescent protein into a bright blue probe,” Chem. Biol. 15(10), 1116–1124 (2008). [CrossRef] [PubMed]
  36. B. Treanor, P. M. P. Lanigan, K. Suhling, T. Schreiber, I. Munro, M. A. A. Neil, D. Phillips, D. M. Davis, P. M. W. French, “Imaging fluorescence lifetime heterogeneity applied to GFP-tagged MHC protein at an immunological synapse,” J. Microsc. 217(1), 36–43 (2005). [CrossRef] [PubMed]
  37. A. J. W. G. Visser, S. P. Laptenok, N. V. Visser, A. van Hoek, D. J. S. Birch, J.-C. Brochon, J. W. Borst, “Time-resolved FRET fluorescence spectroscopy of visible fluorescent protein pairs,” Eur. Biophys. J. 39(2), 241–253 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MP4 (2189 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited