OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 9 — May. 5, 2014
  • pp: 10366–10379

Characterization and application of chirped photonic crystal fiber in multiphoton imaging

Jiali Yu, Haishan Zeng, Harvey Lui, Julia S. Skibina, Günter Steinmeyer, and Shuo Tang  »View Author Affiliations

Optics Express, Vol. 22, Issue 9, pp. 10366-10379 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (7541 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Fiber delivery of ultrashort pulses is important for multiphoton endoscopy. A chirped photonic crystal fiber (CPCF) is first characterized for its transmission bandwidth, propagation loss, and dispersion properties. Its extremely low dispersion ( ~150 f s 2 /m ) enables the delivery of sub-30 fs pulses through a ~1 m-long CPCF. The CPCF is then incorporated into a multiphoton imaging system and its performance is demonstrated by imaging various biological samples including yew leaf, mouse tendon, and human skin. The imaging quality is further compared with images acquired by a multiphoton imaging system with free-space or hollow-core photonic band-gap fiber (PBF) delivery of pulses. Compared with free-space system, the CPCF delivered system maintains the same ultrashort pulsewidth and the image qualities are comparable. Compared with the PBF delivery, CPCF provides a 35 times shorter pulsewidth at the sample location, which results in a ~12 and 50 times improvement in two-photon excitation fluorescence (TPEF) and second harmonic generation (SHG) signals respectively. Our results show that CPCF has great potential for fiber delivery of ultrashort pulses for multiphoton endoscopy.

© 2014 Optical Society of America

OCIS Codes
(110.2350) Imaging systems : Fiber optics imaging
(320.7140) Ultrafast optics : Ultrafast processes in fibers
(180.4315) Microscopy : Nonlinear microscopy
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics

Original Manuscript: February 6, 2014
Revised Manuscript: April 7, 2014
Manuscript Accepted: April 11, 2014
Published: April 22, 2014

Virtual Issues
Vol. 9, Iss. 7 Virtual Journal for Biomedical Optics

Jiali Yu, Haishan Zeng, Harvey Lui, Julia S. Skibina, Günter Steinmeyer, and Shuo Tang, "Characterization and application of chirped photonic crystal fiber in multiphoton imaging," Opt. Express 22, 10366-10379 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. W. Denk, J. H. Strickler, W. W. Webb, “Two-photon laser scanning fluorescence microscopy,” Science 248(4951), 73–76 (1990). [CrossRef] [PubMed]
  2. A. Zoumi, A. Yeh, B. J. Tromberg, “Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence,” Proc. Natl. Acad. Sci. U.S.A. 99(17), 11014–11019 (2002). [CrossRef] [PubMed]
  3. C. Stosiek, O. Garaschuk, K. Holthoff, A. Konnerth, “In vivo two-photon calcium imaging of neuronal networks,” Proc. Natl. Acad. Sci. U.S.A. 100(12), 7319–7324 (2003). [CrossRef] [PubMed]
  4. E. B. Brown, R. B. Campbell, Y. Tsuzuki, L. Xu, P. Carmeliet, D. Fukumura, R. K. Jain, “In vivo measurement of gene expression, angiogenesis and physiological function in tumors using multiphoton laser scanning microscopy,” Nat. Med. 7(7), 864–868 (2001). [CrossRef] [PubMed]
  5. D. Bird, M. Gu, “Fibre-optic two-photon scanning fluorescence microscopy,” J. Microsc. 208(1), 35–48 (2002). [CrossRef] [PubMed]
  6. F. Helmchen, M. S. Fee, D. W. Tank, W. Denk, “A miniature head-mounted two-photon microscope. high-resolution brain imaging in freely moving animals,” Neuron 31(6), 903–912 (2001). [CrossRef] [PubMed]
  7. C. Lefort, T. Mansuryan, F. Louradour, A. Barthelemy, “Pulse compression and fiber delivery of 45 fs Fourier transform limited pulses at 830 nm,” Opt. Lett. 36(2), 292–294 (2011). [CrossRef] [PubMed]
  8. M. T. Myaing, D. J. MacDonald, X. Li, “Fiber-optic scanning two-photon fluorescence endoscope,” Opt. Lett. 31(8), 1076–1078 (2006). [CrossRef] [PubMed]
  9. D. R. Rivera, C. M. Brown, D. G. Ouzounov, I. Pavlova, D. Kobat, W. W. Webb, C. Xu, “Compact and flexible raster scanning multiphoton endoscope capable of imaging unstained tissue,” Proc. Natl. Acad. Sci. U.S.A. 108(43), 17598–17603 (2011). [CrossRef] [PubMed]
  10. Y. Zhang, M. L. Akins, K. Murari, J. Xi, M. J. Li, K. Luby-Phelps, M. Mahendroo, X. Li, “A compact fiber-optic SHG scanning endomicroscope and its application to visualize cervical remodeling during pregnancy,” Proc. Natl. Acad. Sci. U.S.A. 109(32), 12878–12883 (2012). [CrossRef] [PubMed]
  11. E. R. Andresen, G. Bouwmans, S. Monneret, H. Rigneault, “Two-photon lensless endoscope,” Opt. Express 21(18), 20713–20721 (2013). [CrossRef] [PubMed]
  12. B. A. Flusberg, J. C. Jung, E. D. Cocker, E. P. Anderson, M. J. Schnitzer, “In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope,” Opt. Lett. 30(17), 2272–2274 (2005). [CrossRef] [PubMed]
  13. C. L. Hoy, N. J. Durr, P. Chen, W. Piyawattanametha, H. Ra, O. Solgaard, A. Ben-Yakar, “Miniaturized probe for femtosecond laser microsurgery and two-photon imaging,” Opt. Express 16(13), 9996–10005 (2008). [CrossRef] [PubMed]
  14. R. Le Harzic, I. Riemann, M. Weinigel, K. König, B. Messerschmidt, “Rigid and high-numerical-aperture two-photon fluorescence endoscope,” Appl. Opt. 48(18), 3396–3400 (2009). [CrossRef] [PubMed]
  15. D. M. Huland, C. M. Brown, S. S. Howard, D. G. Ouzounov, I. Pavlova, K. Wang, D. R. Rivera, W. W. Webb, C. Xu, “In vivo imaging of unstained tissues using long gradient index lens multiphoton endoscopic systems,” Biomed. Opt. Express 3(5), 1077–1085 (2012). [CrossRef] [PubMed]
  16. L. Fu, X. Gan, M. Gu, “Nonlinear optical microscopy based on double-clad photonic crystal fibers,” Opt. Express 13(14), 5528–5534 (2005). [CrossRef] [PubMed]
  17. B. A. Flusberg, E. D. Cocker, W. Piyawattanametha, J. C. Jung, E. L. M. Cheung, M. J. Schnitzer, “Fiber-optic fluorescence imaging,” Nat. Methods 2(12), 941–950 (2005). [CrossRef] [PubMed]
  18. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, 2007), Chap. 1.
  19. R. L. Fork, O. E. Martinez, J. P. Gordon, “Negative dispersion using pairs of prisms,” Opt. Lett. 9(5), 150–152 (1984). [CrossRef] [PubMed]
  20. M. Müller, J. Squier, R. Wolleschensky, U. Simon, G. J. Brakenhoff, “Dispersion pre-compensation of 15 femtosecond optical pulses for high-numerical-aperture objectives,” J. Microsc. 191(2), 141–150 (1998). [CrossRef] [PubMed]
  21. O. Martinez, “3000 times grating compressor with positive group velocity dispersion: Application to fiber compensation in 1.3-1.6 µm region,” IEEE J. Quantum Electron. 23(1), 59–64 (1987). [CrossRef]
  22. D. G. Ouzounov, F. R. Ahmad, D. Müller, N. Venkataraman, M. T. Gallagher, M. G. Thomas, J. Silcox, K. W. Koch, A. L. Gaeta, “Generation of Megawatt optical solitons in hollow-core photonic band-gap fibers,” Science 301(5640), 1702–1704 (2003). [CrossRef] [PubMed]
  23. W. Göbel, A. Nimmerjahn, F. Helmchen, “Distortion-free delivery of nanojoule femtosecond pulses from a Ti:sapphire laser through a hollow-core photonic crystal fiber,” Opt. Lett. 29(11), 1285–1287 (2004). [CrossRef] [PubMed]
  24. S. P. Tai, M. C. Chan, T. H. Tsai, S. H. Guol, L. J. Chen, C. K. Sun, “Two-photon fluorescence microscope with a hollow-core photonic crystal fiber,” Opt. Express 12(25), 6122–6128 (2004). [CrossRef] [PubMed]
  25. J. S. Skibina, R. Iliew, J. Bethge, M. Bock, D. Fischer, V. I. Beloglasov, R. Wedell, G. Steinmeyer, “A chirped photonic-crystal fibre,” Nat. Photonics 2(11), 679–683 (2008). [CrossRef]
  26. Yu. S. Skibina, V. V. Tuchin, V. I. Beloglazov, G. Steinmeyer, J. Bethge, R. Wedell, N. Langhoff, “Photonic crystal fibres in biomedical investigations,” Quantum Electron. 41(4), 284–301 (2011). [CrossRef]
  27. J. Bethge, G. Steinmeyer, S. Burger, F. Lederer, R. Iliew, “Guiding Properties of Chirped Photonic Crystal Fibers,” J. Lightwave Technol. 27(11), 1698–1706 (2009). [CrossRef]
  28. J. Diels and W. Rudolph, Ultrashort Laser Pulse Phenomena (Academic Press, 2006), Chap. 1.
  29. S. Tang, T. B. Krasieva, Z. Chen, G. Tempea, B. J. Tromberg, “Effect of pulse duration on two-photon excited fluorescence and second harmonic generation in nonlinear optical microscopy,” J. Biomed. Opt. 11(2), 020501 (2006). [CrossRef] [PubMed]
  30. R. M. Williams, W. R. Zipfel, W. W. Webb, “Interpreting second-harmonic generation images of collagen I fibrils,” Biophys. J. 88(2), 1377–1386 (2005). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited