OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S1 — Jan. 13, 2014
  • pp: A1–A12

Synergistic plasmonic and photonic crystal light-trapping: Architectures for optical up-conversion in thin-film solar cells

Khai Q. Le and Sajeev John  »View Author Affiliations


Optics Express, Vol. 22, Issue S1, pp. A1-A12 (2014)
http://dx.doi.org/10.1364/OE.22.0000A1


View Full Text Article

Enhanced HTML    Acrobat PDF (2109 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate, numerically, that with a 60 nanometer layer of optical up-conversion material, embedded with plasmonic core-shell nano-rings and placed below a sub-micron silicon conical-pore photonic crystal it is possible to absorb sunlight well above the Lambertian limit in the 300-1100 nm range. With as little as 500 nm, equivalent bulk thickness of silicon, the maximum achievable photo-current density (MAPD) is about 36 mA/cm2, using above-bandgap sunlight. This MAPD increases to about 38 mA/cm2 for one micron of silicon. Our architecture also provides solar intensity enhancement by a factor of at least 1400 at the sub-bandgap wavelength of 1500 nm, due to plasmonic and photonic crystal resonances, enabling a further boost of photo-current density from up-conversion of sub-bandgap sunlight. With an external solar concentrator, providing 100 suns, light intensities sufficient for significant nonlinear up-conversion can be realized. Two-photon absorption of sub-bandgap sunlight is further enhanced by the large electromagnetic density of states in the photonic crystal at the re-emission wavelength near 750 nm. It is suggested that this synergy of plasmonic and photonic crystal resonances can lead to unprecedented power conversion efficiency in ultra-thin-film silicon solar cells.

© 2013 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(240.6680) Optics at surfaces : Surface plasmons
(350.6050) Other areas of optics : Solar energy
(350.4238) Other areas of optics : Nanophotonics and photonic crystals
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: September 9, 2013
Revised Manuscript: November 3, 2013
Manuscript Accepted: November 4, 2013
Published: November 11, 2013

Citation
Khai Q. Le and Sajeev John, "Synergistic plasmonic and photonic crystal light-trapping: Architectures for optical up-conversion in thin-film solar cells," Opt. Express 22, A1-A12 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S1-A1


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Saga, “Advances in crystalline silicon solar cell technology for industrial mass production,” NPG Asia Mater.2(3), 96–102 (2010). [CrossRef]
  2. K. R. Catchpole and A. Polman, “Plasmonic solar cells,” Opt. Express16(26), 21793–21800 (2008). [CrossRef] [PubMed]
  3. S. Hänni, G. Bugnon, G. Parascandolo, M. Boccard, J. Escarré, M. Despeisse, F. Meillaud, and C. Ballif, “High-efficiency microcrystalline silicon single-junction solar cells,” Prog. Photovolt. Res. Appl.21(5) 821– 826(2013). [CrossRef]
  4. S. E. Han and G. Chen, “Toward the Lambertian limit of light trapping in thin nanostructured silicon solar cells,” Nano Lett.10(11), 4692–4696 (2010). [CrossRef] [PubMed]
  5. A. Abass, K. Q. Le, A. Alù, M. Burgelman, and B. Maes, “Dual-interface gratings for broadband absorption enhancement in thin-film solar cells,” Phys. Rev. B85(11), 115449 (2012). [CrossRef]
  6. U. W. Paetzold, E. Moulin, D. Michaelis, W. Böttler, C. Wächter, V. Hagemann, M. Meier, R. Carius, and U. Rau, “Plasmonic reflection grating back contacts for microcrystalline silicon solar cells,” Appl. Phys. Lett.99(18), 181105 (2011). [CrossRef]
  7. W. Wang, S. Wu, K. Reinhardt, Y. Lu, and S. Chen, “Broadband light absorption enhancement in thin-film silicon solar cells,” Nano Lett.10(6), 2012–2018 (2010). [CrossRef] [PubMed]
  8. P. Spinelli, V. E. Ferry, J. van de Groep, M. van Lare, M. A. Verschuuren, R. E. I. Schropp, H. A. Atwater, and A. Polman, “Plasmonic light trapping in thin-film Si solar cells,” J. Opt.14(2), 024002 (2012). [CrossRef]
  9. K. Q. Le, A. Abass, B. Maes, P. Bienstman, and A. Alù, “Comparing plasmonic and dielectric gratings for absorption enhancement in thin-film organic solar cells,” Opt. Express20(S1), A39–A50 (2012). [CrossRef] [PubMed]
  10. S. John, “Electromagnetic absorption in a disordered medium near a photon mobility edge,” Phys. Rev. Lett.53(22), 2169–2172 (1984). [CrossRef]
  11. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  12. S. John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett.58(23), 2486–2489 (1987). [CrossRef] [PubMed]
  13. S. John, “Why trap light?” Nat. Mater.11(12), 997–999 (2012). [CrossRef] [PubMed]
  14. M. Green, Third Generation Photovoltaics (Springer, 2006).
  15. S. Foster and S. John, “Light-trapping in dye-sensitized solar cells,” Energy Environ. Sci.6, 2972–2983 (2013).
  16. X. Meng, V. Depauw, G. Gomard, O. El Daif, C. Trompoukis, E. Drouard, C. Jamois, A. Fave, F. Dross, I. Gordon, and C. Seassal, “Design, fabrication and optical characterization of photonic crystal assisted thin film monocrystalline-silicon solar cells,” Opt. Express20(S4Suppl 4), A465–A475 (2012). [CrossRef] [PubMed]
  17. L. Zeng, Y. Yi, C. Hong, J. Liu, N. Feng, X. Duan, L. C. Kimerling, and B. A. Alamariu, “Efficiency enhancement in Si solar cells by textured photonic crystal back reflector,” Appl. Phys. Lett.89(11), 111111 (2006). [CrossRef]
  18. G. Demésy and S. John, “Solar energy trapping with modulated silicon nanowire photonic crystals,” J. Appl. Phys.112(7), 074326 (2012). [CrossRef]
  19. A. Deinega and S. John, “Solar power conversion efficiency in modulated silicon nanowire photonic crystals,” J. Appl. Phys.112(7), 074327 (2012). [CrossRef]
  20. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett.10(3), 1082–1087 (2010). [CrossRef] [PubMed]
  21. X. X. Lin, X. Hua, Z. G. Huang, and W. Z. Shen, “Realization of high performance silicon nanowire based solar cells with large size,” Nanotechnology24(23), 235402 (2013). [CrossRef] [PubMed]
  22. C. Lin and M. L. Povinelli, “Optimal design of aperiodic, vertical silicon nanowire structures for photovoltaics,” Opt. Express19(S5), A1148–A1154 (2011). [CrossRef] [PubMed]
  23. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett.7(11), 3249–3252 (2007). [CrossRef] [PubMed]
  24. A. Chutinan and S. John, “Light trapping and absorption optimization in certain thin-film photonic crystal architectures,” Phys. Rev. A78(2), 023825 (2008). [CrossRef]
  25. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am.72(7), 899–907 (1982). [CrossRef]
  26. S. Eyderman, S. John, and A. Deinega, “Solar light trapping in slanted conical-pore photonic crystals: Beyond statistical ray trapping,” J. Appl. Phys.113(15), 154315 (2013). [CrossRef]
  27. A. Deinega, S. Eyderman, and S. John, “Coupled optical and electrical modeling of solar cell based on conical pore silicon photonic crystals,” J. Appl. Phys.113(22), 224501 (2013). [CrossRef]
  28. Y. C. Chen and T. M. Chen, “Improvement of conversion efficiency of silicon solar cells using up-conversion molybdate La2Mo2O9:Yb, R (R=Er, Ho) phosphors,” J. Rare Earths29(8), 723–726 (2011). [CrossRef]
  29. Z. R. Abrams, A. Niv, and X. Zhang, “Solar energy enhancement using down-converting nanoparticles: A rigorous approach,” J. Appl. Phys.109(11), 114905 (2011). [CrossRef]
  30. S. Fischer, F. Hallermann, T. Eichelkraut, G. von Plessen, K. W. Krämer, D. Biner, H. Steinkemper, M. Hermle, and J. C. Goldschmidt, “Plasmon enhanced upconversion luminescence near gold nanoparticles-simulation and analysis of the interactions,” Opt. Express20(1), 271–282 (2012). [CrossRef] [PubMed]
  31. T. Trupke, M. A. Green, and P. Wurfel, “Improving solar cell efficiencies by up-conversion of sub-band-gap light,” J. Appl. Phys.92(7), 4117–4122 (2002). [CrossRef]
  32. J. C. C. Fan, “The future of high efficiency solar cells,” Sol. Cells12(1-2), 51–62 (1984). [CrossRef]
  33. M. F. Lamorte and D. Abbot, “Analysis of AlGaAs–GaInAs cascade solar cell under AM0–AM5 spectra,” Solid-State Electron.22(5), 467–473 (1979). [CrossRef]
  34. F. A. Rubinelli, J. K. Rath, and R. E. I. Schropp, “Microcrystalline n-i-p tunnel junction in a-Si:H/a-Si:H tandem cells,” J. Appl. Phys.89(7), 4010 (2001). [CrossRef]
  35. R. P. Gale, J. C. C. Fan, G. W. Turner, R. L. Chapman, and J. V. Pantato, “Efficient AlGaAs shallow-homojunction solar cells,” Appl. Phys. Lett.44(6), 632–634 (1984). [CrossRef]
  36. M. J. Keevers and M. A. Green, “Efficiency improvements of silicon solar cells by the impurity photovoltaic effect,” J. Appl. Phys.75(8), 4022–4031 (1994). [CrossRef]
  37. G. Gutller and H. Queisser, “Impurity photovoltaic effect in silicon,” Energy Convers.10(2), 51–55 (1970). [CrossRef]
  38. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys.32(3), 510–519 (1961). [CrossRef]
  39. T. Trupke, A. Shalav, B. S. Richards, P. Wurfel, and M. A. Green, “Efficiency enhancement of solar cells by luminescent up-conversion of sunlight,” Sol. Energy Mater. Sol. Cells90(18-19), 3327–3338 (2006). [CrossRef]
  40. P. Gipart, F. Auzel, J.-C. Guillaume, and K. Zahraman, “Below band-gap IR response of substrate-free GaAs solar cells using two-photon up-conversion,” Jpn. J. Appl. Phys.35(8), 4401–4402 (1996). [CrossRef]
  41. S. Fischer, J. C. Goldschmidt, P. Loper, G. H. Bauer, K. W. Kramer, D. Biner, M. Hermle, and S. W. Glunz, “Enhancement of silicon solar cell efficiency by upconversion: optical and electrical characterization,” J. Appl. Phys.108(4), 044912 (2010). [CrossRef]
  42. W. Zou, C. Visser, J. A. Maduro, M. S. Pshenichnikov, and J. C. Hummelen, “Broadband dye-sensitized upconverion of near-infrared light,” Nat. Photonics6(8), 560–564 (2012). [CrossRef]
  43. S. Schietinger, T. Aichele, H.-Q. Wang, T. Nann, and O. Benson, “Plasmon-enhanced upconversion in single NaYF4:Yb3+/Er3+ codoped nanocrystals,” Nano Lett.10(1), 134–138 (2010). [CrossRef] [PubMed]
  44. A. C. Atre, A. G. Etxarri, H. Alaeian, and J. A. Dionne, “Toward high-efficiency solar upconversion with plasmonic nanostructures,” J. Opt.14(2), 024008 (2012). [CrossRef]
  45. J.-Ch. Boyer and F. C. J. M. van Veggel, “Absolute quantum yield measurements of colloidal NaYF4: Er3+, Yb3+ upconverting nanoparticles,” Nanoscale2(8), 1417–1419 (2010). [CrossRef] [PubMed]
  46. A. Shalav, B. S. Richards, and M. A. Green, “Luminescent layers for enhanced silicon solar cell performance: up-conversion,” Sol. Energy Mater. Sol. Cells91(9), 829–842 (2007). [CrossRef]
  47. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, 1985).
  48. P. B. Johnson and R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B6(12), 4370–4379 (1972). [CrossRef]
  49. S. Fischer, H. Steinkemper, P. Loper, M. Hermle, and J. C. Goldschmidt, “Modeling upconversion of erbium doped nanocrystals based on experimentally determined Einstein coefficients,” J. Appl. Phys.111(1), 013109 (2012). [CrossRef]
  50. A. Abass, H. Shen, P. Bienstman, and B. Maes, “Angle insensitive enhancement of organic solar cells using metallic gratings,” J. Appl. Phys.109(2), 023111 (2011). [CrossRef]
  51. H. Shen, P. Bienstman, and B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys.106(7), 073109 (2009). [CrossRef]
  52. R. Ren, Y. Guo, and R. Zhu, “Design of a plasmonic back reflector for silicon nanowire decorated solar cells,” Opt. Lett.37(20), 4245–4247 (2012). [CrossRef] [PubMed]
  53. A. Mellor, H. Hauser, C. Wellens, J. Benick, J. Eisenlohr, M. Peters, A. Guttowski, I. Tobías, A. Martí, A. Luque, and B. Bläsi, “Nanoimprinted diffraction gratings for crystalline silicon solar cells: implementation, characterization and simulation,” Opt. Express21(S2Suppl 2), A295–A304 (2013). [CrossRef] [PubMed]
  54. K. Zhou, Z. Guo, X. Li, J. Y. Jung, S. W. Jee, K. T. Park, H. D. Um, N. Wang, and J. H. Lee, “The tradeoff between plasmonic enhancement and optical loss in silicon nanowire solar cells integrated in a metal back reflector,” Opt. Express20(S5Suppl 5), A777–A787 (2012). [CrossRef] [PubMed]
  55. F. Auzel, “Upconversion and anti-Stokes processes with f and d ions in solids,” Chem. Rev.104(1), 139–174 (2004). [CrossRef] [PubMed]
  56. F. Wang and X. Liu, “Recent advances in the chemistry of lanthanide-doped upconversion nanocrystals,” Chem. Soc. Rev.38(4), 976–989 (2009). [CrossRef] [PubMed]
  57. D. R. Gamelin and H. U. Güdel, “Design of luminescent inorganic materials: new photophysical processes studied by optical spectroscopy,” Acc. Chem. Res.33(4), 235–242 (2000). [CrossRef] [PubMed]
  58. V. K. Rai, C. B. de Araújo, Y. Ledemi, B. Bureau, M. Poulain, X. H. Zhang, and Y. Messaddeq, “Surface-plasmon-enhanced frequency upconversion in Pr3+ doped tellurium-oxide glasses containing silver nanoparticles,” J. Appl. Phys.103(9), 093526 (2008). [CrossRef]
  59. J. C. Goldschmidt, S. Fisher, H. Steinkemper, F. Hallermann, G. von Plessen, K. W. Kramer, D. Biner, and M. Hermle, “Increasing upconversion by plasmon resonance in metal nanoparticles-A combined simulation analysis,” IEEE J. Photovolt.2(2), 134–140 (2012). [CrossRef]
  60. K.-Y. Jung, F. L. Teixeira, and R. M. Reano, “Au/SiO2 nanoring plasmon waveguides at optical communication band,” J. Lightwave Technol.25(9), 2757–2765 (2007). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited