OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S1 — Jan. 13, 2014
  • pp: A111–A119

Hexagonal sphere gratings for enhanced light trapping in crystalline silicon solar cells

Johannes Eisenlohr, Jan Benick, Marius Peters, Benedikt Bläsi, Jan Christoph Goldschmidt, and Martin Hermle  »View Author Affiliations

Optics Express, Vol. 22, Issue S1, pp. A111-A119 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3494 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Enhanced absorption of near infrared light in silicon solar cells is important for achieving high conversion efficiencies while reducing the solar cell’s thickness. Hexagonal gratings on the rear side of solar cells can achieve such absorption enhancement. Our wave optical simulations show photocurrent density gains of up to 3 mA/cm2 for solar cells with a thickness of 40 µm and a planar front side. Hexagonal sphere gratings have been fabricated and optical measurements confirm the predicted absorption enhancement. The measured absorption enhancement corresponds to a photocurrent density gain of 1.04 mA/cm2 for planar wafers with a thickness of 250 µm and 1.49 mA/cm2 for 100 µm.

© 2013 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(050.1950) Diffraction and gratings : Diffraction gratings

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: September 30, 2013
Revised Manuscript: November 13, 2013
Manuscript Accepted: November 13, 2013
Published: December 16, 2013

Johannes Eisenlohr, Jan Benick, Marius Peters, Benedikt Bläsi, Jan Christoph Goldschmidt, and Martin Hermle, "Hexagonal sphere gratings for enhanced light trapping in crystalline silicon solar cells," Opt. Express 22, A111-A119 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Yablonovitch, “Statistical ray optics,” J. Opt. Soc. Am. 72(7), 899–907 (1982). [CrossRef]
  2. E. Yablonovitch and G. D. Cody, “Intensity enhancement in textured optical sheets for solar cells,” IEEE Trans. Electron. Dev. 29(2), 300–305 (1982). [CrossRef]
  3. I. M. Peters, “Photonic Concepts for Solar Cells”, PhD thesis (Universität Freiburg, Freiburg, Germany, 2009).
  4. Z. Yu, A. Raman, and S. Fan, “Fundamental limit of light trapping in grating structures,” Opt. Express 18(S3Suppl 3), A366–A380 (2010). [CrossRef] [PubMed]
  5. P. Sheng, A. N. Bloch, and R. S. Stepleman, “Wavelength-selective absorption enhancement in thin-film solar cells,” Appl. Phys. Lett. 43(6), 579–581 (1983). [CrossRef]
  6. C. Heine and R. H. Morf, “Submicrometer gratings for solar energy applications,” Appl. Opt. 34(14), 2476–2482 (1995). [CrossRef] [PubMed]
  7. P. Bermel, C. Luo, L. Zeng, L. C. Kimerling, and J. D. Joannopoulos, “Improving thin-film crystalline silicon solar cell efficiencies with photonic crystals,” Opt. Express 15(25), 16986–17000 (2007). [CrossRef] [PubMed]
  8. J. Schmidt, A. Merkle, R. Brendel, B. Hoex, M. C. M. van de Sanden, and W. M. M. Kessels, “Surface passivation of high-efficiency silicon solar cells by atomic-layer-deposited Al2O3,” Prog. Photovolt. Res. Appl. 16(6), 461–466 (2008). [CrossRef]
  9. M. G. Moharam, E. B. Grann, D. A. Pommet, and T. K. Gaylord, “Formulation for stable and efficient implementation of the rigorous coupled-wave analysis of binary gratings,” J. Opt. Soc. Am. A 12(5), 1068–1076 (1995). [CrossRef]
  10. IEC, Photovoltaic Devices - Part 3: Measurement Principles for Terrestrial Photovoltaic (PV) Solar Devices with Reference Spectral Irradiance Data., 2nd ed., International Standard, IEC 60904–3 (International Electrotechnical Commission, 2008).
  11. D. Kray, “Hocheffiziente Solarzellenstrukturen für Kristallines Silicium-Material Industrieller Qualität,” PhD thesis (Universität Konstanz, Konstanz, 2004).
  12. M. Peters, M. Rüdiger, H. Hauser, M. Hermle, and B. Bläsi, “Diffractive gratings for crystalline silicon solar cells—optimum parameters and loss mechanisms,” Progr. Photovolt.: Res. Appl. 20, 862–873 (2011).
  13. A. Mellor, I. Tobias, A. Marti, and A. Luque, “A numerical study of Bi-periodic binary diffraction gratings for solar cell applications,” Sol. Energy Mater. Sol. Cells 95(12), 3527–3535 (2011). [CrossRef]
  14. J. Gjessing, A. S. Sudbø, and E. S. Marstein, “Comparison of periodic light-trapping structures in thin crystalline silicon solar cells,” J. Appl. Phys. 110(3), 033104 (2011). [CrossRef]
  15. S. Janz, P. Voisin, D. Suwito, M. Peters, M. Hermle, and S. W. Glunz, “Photonic crystals as rear-side diffusers and reflectors for high efficiency silicon solar cells,” in Proceedings of the 24th European Solar Energy Conference, 2009, 1529–1533.
  16. P. Voisin, M. Peters, H. Hauser, C. Helgert, E.-B. Kley, T. Pertsch, B. Bläsi, M. Hermle, and S. W. Glunz, “Nanostructured back side silicon solar cells,” in Proceedings of the 24th European Solar Energy Conference,2009, 1997–2000.
  17. P. Berger, H. Hauser, D. Suwito, S. Janz, M. Peters, B. Bläsi, and M. Hermle,R. B. Wehrspohn and A. Gombert, eds., “Realization and Evaluation of Diffractive Systems on the Back Side of Silicon Solar Cells,” in Proceedings of SPIE, R. B. Wehrspohn and A. Gombert, eds. (2010), p. 772504. [CrossRef]
  18. J. H. Poynting, “On the Transfer of Energy in the Electromagnetic Field,” Philos. Trans. R. Soc. Lond. 175(0), 343–361 (1884). [CrossRef]
  19. K.-H. Brenner, “Aspects for calculating local absorption with the rigorous coupled-wave method,” Opt. Express 18(10), 10369–10376 (2010). [CrossRef] [PubMed]
  20. A. Mellor, H. Hauser, C. Wellens, J. Benick, J. Eisenlohr, M. Peters, A. Guttowski, I. Tobías, A. Martí, A. Luque, and B. Bläsi, “Nanoimprinted diffraction gratings for crystalline silicon solar cells: implementation, characterization and simulation,” Opt. Express 21(S2Suppl 2), A295–A304 (2013). [CrossRef] [PubMed]
  21. A. Goetzberger, “Optical confinement in thin Si-solar cells by diffuse back reflectors,” in Proceedings of the 15th IEEE Photovoltaic Specialists Conference, 1981, 867–870.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited