OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A344–A358

Performance-limiting factors for GaAs-based single nanowire photovoltaics

Xufeng Wang, Mohammad Ryyan Khan, Mark Lundstrom, and Peter Bermel  »View Author Affiliations


Optics Express, Vol. 22, Issue S2, pp. A344-A358 (2014)
http://dx.doi.org/10.1364/OE.22.00A344


View Full Text Article

Acrobat PDF (2174 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

GaAs nanowires (NWs) offer the possibility of decoupling light absorption from charge transport for high-performance photovoltaic (PV) devices. However, it is still an open question as to whether these devices can exceed the Shockley-Queisser efficiency limit for single-junction PV. In this work, single standing GaAs-based nanowire solar cells in both radial and vertical junction configurations is analyzed and compared to a planar thin-film design. By using a self-consistent, electrical-optically coupled 3D simulator, we show the design principles for nanowire and planar solar cells are significantly different; nanowire solar cells are vulnerable to surface and contact recombination, while planar solar cells suffer significant losses due to imperfect backside mirror reflection. Overall, the ultimate efficiency of the GaAs nanowire solar cell with radial and vertical junction is not expected to exceed that of the thin-film design, with both staying below the Shockley-Queisser limit.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(350.6050) Other areas of optics : Solar energy
(250.5590) Optoelectronics : Quantum-well, -wire and -dot devices

ToC Category:
Energy Nanotechnology

History
Original Manuscript: December 3, 2013
Revised Manuscript: January 31, 2014
Manuscript Accepted: February 3, 2014
Published: February 14, 2014

Virtual Issues
Renewable Energy and the Environment (2014) Optics Express

Citation
Xufeng Wang, Mohammad Ryyan Khan, Mark Lundstrom, and Peter Bermel, "Performance-limiting factors for GaAs-based single nanowire photovoltaics," Opt. Express 22, A344-A358 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S2-A344


Sort:  Author  |  Year  |  Journal  |  Reset

References

  1. M. A. Green, “Third generation photovoltaics: Ultra-high conversion efficiency at low cost,” Prog. Photovolt. Res. Appl.9(2), 123–135 (2001). [CrossRef]
  2. J. Wallentin, N. Anttu, D. Asoli, M. Huffman, I. Aberg, M. H. Magnusson, G. Siefer, P. Fuss-Kailuweit, F. Dimroth, B. Witzigmann, H. Q. Xu, L. Samuelson, K. Deppert, and M. T. Borgström, “InP nanowire array solar cells achieving 13.8% efficiency by exceeding the ray optics limit,” Science339(6123), 1057–1060 (2013). [CrossRef] [PubMed]
  3. W. Shockley and H. J. Queisser, “Detailed Balance Limit of Efficiency of p-n Junction Solar Cells,” J. Appl. Phys.32(3), 510 (1961). [CrossRef]
  4. O. D. Miller, E. Yablonovitch, and S. R. Kurtz, “Strong Internal and External Luminescence as Solar Cells Approach the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics2(3), 303–311 (2012). [CrossRef]
  5. M. A. Green, K. Emery, Y. Hishikawa, W. Warta, and E. D. Dunlop, “Solar cell efficiency tables (version 42),” Prog. Photovolt. Res. Appl.21(1), 827–837 (2013). [CrossRef]
  6. B. M. Kayes, H. Nie, R. Twist, S. G. Spruytte, F. Reinhardt, I. C. Kizilyalli, and G. S. Higashi, “27.6% Conversion efficiency, a new record for single-junction solar cells under 1 sun illumination,” in IEEE Phovoltaic Specialist Conference, (IEEE, 2011), 000004–000008.
  7. P. Krogstrup, H. I. Jørgensen, M. Heiss, O. Demichel, J. V. Holm, M. Aagesen, J. Nygard, and A. Fontcuberta i Morral, “Single-nanowire solar cells beyond the Shockley–Queisser limit,” Nat. Photonics7(4), 306–310 (2013). [CrossRef]
  8. T.-H. Her, R. J. Finlay, C. Wu, S. Deliwala, and E. Mazur, “Microstructuring of silicon with femtosecond laser pulses,” Appl. Phys. Lett.73(12), 1673 (1998). [CrossRef]
  9. D. M. Callahan, J. N. Munday, and H. A. Atwater, “Solar Cell light trapping beyond the ray optic limit,” Nano Lett.12(1), 214–218 (2012). [CrossRef] [PubMed]
  10. J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, and Y. Cui, “Optical AbsorptionEnhancement in Amorphous Silicon Nanowire and Nanocone Arrays,” Nano Lett.9(1), 279–282 (2009). [CrossRef] [PubMed]
  11. L. Cao, P. Fan, A. P. Vasudev, J. S. White, Z. Yu, W. Cai, J. A. Schuller, S. Fan, and M. L. Brongersma, “Semiconductor nanowire optical antenna solar absorbers,” Nano Lett.10(2), 439–445 (2010). [CrossRef] [PubMed]
  12. M. D. Kelzenberg, D. B. Turner-Evans, B. M. Kayes, M. A. Filler, M. C. Putnam, N. S. Lewis, and H. A. Atwater, “Single-nanowire Si solar cells,” in IEEE Photovoltaic Specialist Conference, (IEEE, 2008), 1–6.
  13. E. C. Garnett and P. Yang, “Silicon nanowire radial p-n junction solar cells,” J. Am. Chem. Soc.130(29), 9224–9225 (2008). [CrossRef] [PubMed]
  14. E. C. Garnett, M. L. Brongersma, Y. Cui, and M. D. McGehee, “Nanowire Solar Cells,” Annu. Rev. Mater. Res.41(1), 269–295 (2011). [CrossRef]
  15. B. M. Kayes, H. A. Atwater, and N. S. Lewis, “Comparison of the device physics principles of planar and radial p-n junction nanorod solar cells,” J. Appl. Phys.97(11), 114302 (2005). [CrossRef]
  16. E. C. Garnett, C. Peters, M. Brongersma, Y. Cui, and M. McGehee, “Silicon nanowire hybrid photovoltaics,” in 2010 35th IEEE Photovoltaic Specialists Conference, (Ieee, 2010), 000934–000938.
  17. M. M. Adachi, M. P. Anantram, and K. S. Karim, “Core-shell silicon nanowire solar cells,” Scientific Reports3, 1546 (2013).
  18. J. Nelson, The Physics of Solar Cells, Series on Properties of Semiconductor Materials (Imperial College Press, 2003), Vol. 50, pp. 363–363.
  19. F. Stern and J. M. Woodall, “Photon recycling in semiconductor lasers,” J. Appl. Phys.45(9), 3904 (1974). [CrossRef]
  20. E. Yablonovitch, O. D. Miller, and S. R. Kurtz, “A great solar cell also needs to be a great LED: External fluorescence leads to new efficiency record,” AIP Conf. Proc. 9, 9-11 (2013).
  21. X. Wang, M. R. Khan, M. A. Alam, and M. Lundstrom, “Approaching the Shockley-Queisser limit in GaAs solar cells,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2012), 002117–002121.
  22. U. Rau, “Superposition and Reciprocity in the Electroluminescence and Photoluminescence of Solar Cells,” IEEE Journal of Photovoltaics2(2), 169–172 (2012). [CrossRef]
  23. X. Wang and M. S. Lundstrom, “On the Use of Rau's Reciprocity to Deduce External Radiative Efficiency in Solar Cells,” IEEE Journal of Photovoltaics, 1–6 (2013).
  24. A. David, “High efficiency GaN-based LEDs: light extraction by photonic crystals,” Ann. Phys. (Paris)31(6), 1–235 (2007). [CrossRef]
  25. E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett.58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  26. S. C. H. Allen Taflove, Computational Electrodynamics, Artech House Antennas and Propagation Library (Artech House, 2005).
  27. A. F. Oskooi, D. Roundy, M. Ibanescu, P. Bermel, J. D. D. Joannopoulos, and S. G. Johnson, “Meep: A flexible free-software package for electromagnetic simulations by the FDTD method,” Comput. Phys. Commun.181(3), 687–702 (2010). [CrossRef]
  28. M. Bass, C. DeCusatis, J. Enoch, V. Lakshminarayanan, G. Li, C. MacDonald, V. Mahajan, and E. Van Stryland, Handbook of Optics, Third Edition Volume IV: Optical Properties of Materials, Nonlinear Optics, Quantum Optics (set), Handbook of Optics (Mcgraw-hill, 2009).
  29. Synopsys Sentaurus Semiconductor TCAD Software, East Middlefield Road, Mountain View, CA 94043 USA.
  30. R. Pierret, Semiconductor device fundamentals (Addison-Wesley Publishing Company, 1996).
  31. W. van Roosbroeck and W. Shockley, “Photon-Radiative Recombination of Electrons and Holes in Germanium,” Phys. Rev.94(6), 1558–1560 (1954). [CrossRef]
  32. S. M. Durbin, J. L. Gray, R. K. Ahrenkiel, and D. H. Levi, “Numerical modeling of the influence of photon recycling on lifetime measurements,” in IEEE Phovoltaic Specialists Conference, (IEEE, 1993), 628–632.
  33. S. M. Durbin and J. L. Gray, “Numerical modeling of photon recycling in solar cells,” IEEE Trans. Electron. Dev.41(2), 239–245 (1994). [CrossRef]
  34. J. Zhao and M. A. Green, “Optimized antireflection coatings for high-efficiency silicon solar cells,” IEEE Trans. Electron. Dev.38(8), 1925–1934 (1991). [CrossRef]
  35. D. N. Wright, E. S. Marstein, and A. Holt, “Double layer anti-reflective coatings for silicon solar cells,” in IEEE Photovoltaic Specialists Conference, (IEEE, 2005), 1237–1240.
  36. X. Wang, M. R. Khan, J. L. Gray, M. A. Alam, and M. S. Lundstrom, “Design of GaAs Solar Cells Operating Close to the Shockley–Queisser Limit,” IEEE Journal of Photovoltaics3(2), 737–744 (2013). [CrossRef]
  37. J. Moore, C. J. Hages, N. Carter, R. Agrawal, M. Lundstrom, and W. Lafayette, “The Physics of V bi -Related IV Crossover in Thin Film Solar Cells: Applications to Ink Deposited CZTSSe,” in IEEE Photovoltaic Specialists Conference, 2013)
  38. S. H. Demtsu and J. R. Sites, “Effect of back-contact barrier on thin-film CdTe solar cells,” Thin Solid Films510(1-2), 320–324 (2006). [CrossRef]
  39. G. Lush and M. Lundstrom, “Thin film approaches for high-efficiency III-V cells,” Solar Cells.30(1-4), 337–344 (1991). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited