OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S2 — Mar. 10, 2014
  • pp: A386–A395

Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells

Baomin Wang, Erica Stevens, and Paul W. Leu  »View Author Affiliations

Optics Express, Vol. 22, Issue S2, pp. A386-A395 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1832 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We studied the influence of geometric parameters on the optical absorption of gallium arsenide (GaAs) nanocone and nanowire arrays via finite difference time domain simulations. We optimized the structural parameters of the nanocone and nanowire arrays to maximize the ultimate efficiency across a range of lengths from 100 to 1000 nm. Nanocone arrays were found to have improved solar absorption, short-circuit current density, and ultimate efficiencies over nanowire arrays for a wide range of lengths. Detailed simulations reveal that nanocones have superior absorption due to reduced reflection from their smaller tip and reduced transmission from their larger base. Breaking the vertical mirror symmetry of nanowires results in a broader absorption spectrum such that overall efficiencies are enhanced for nanocones. We also evaluated the electric field intensity, carrier generation and angle-dependent optical properties of nanocones and nanowires. The carrier generation in nanocone arrays occurs away from the surface and is more uniform over the entire structure, which should result in less recombination losses than in nanowire arrays.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(350.6050) Other areas of optics : Solar energy
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Light Trapping for Photovoltaics

Original Manuscript: November 11, 2013
Revised Manuscript: January 16, 2014
Manuscript Accepted: February 6, 2014
Published: February 18, 2014

Baomin Wang, Erica Stevens, and Paul W. Leu, "Strong broadband absorption in GaAs nanocone and nanowire arrays for solar cells," Opt. Express 22, A386-A395 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Green, “Limits on the open-circuit voltage and efficiency of silicon solar cells imposed by intrinsic auger processes,” IEEE Trans. Electron. Devices 31, 671–678 (1984). [CrossRef]
  2. M. D. Kelzenberg, S. W. Boettcher, J. A. Petykiewicz, D. B. Turner-Evans, M. C. Putnam, E. L. Warren, J. M. Spurgeon, R. M. Briggs, N. S. Lewis, and H. A. Atwater, “Enhanced absorption and carrier collection in Si wire arrays for photovoltaic applications,” Nat. Mater. 9, 239–244 (2010). [CrossRef] [PubMed]
  3. E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Lett. 10, 1082–1087 (2010). [CrossRef] [PubMed]
  4. K. Peng, Y. Xu, Y. Wu, Y. Yan, S. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small 1, 1062–1067 (2005). [CrossRef]
  5. B. Wang and P. W. Leu, “Enhanced absorption in silicon nanocone arrays for photovoltaics,” Nanotechnology 23, 194003 (2012). [CrossRef] [PubMed]
  6. L. Hu and G. Chen, “Analysis of optical absorption in silicon nanowire arrays for photovoltaic applications,” Nano Lett. 7, 3249–3252 (2007). [CrossRef] [PubMed]
  7. C. Lin and M. L. Povinelli, “Optical absorption enhancement in silicon nanowire arrays with a large lattice constant for photovoltaic applications,” Opt. Express 17, 19371–19381 (2009). [CrossRef] [PubMed]
  8. B. Hua, B. Wang, M. Yu, P. W. Leu, and Z. Fan, “Rational geometrical design of multi-diameter nanopillars for efficient light harvesting,” Nano Energy 2, 951–957 (2013). [CrossRef]
  9. J. Caram, C. Sandoval, M. Tirado, D. Comedi, J. Czaban, D. A. Thompson, and R. R. LaPierre, “Electrical characteristics of core–shell p–n GaAs nanowire structures with te as the n-dopant,” Nanotechnology 21, 134007 (2010). [CrossRef]
  10. C. Colombo, M. Hei, M. Gratzel, and A. Fontcuberta i Morral, “Gallium arsenide p-i-n radial structures for photovoltaic applications,” Appl. Phys. Lett. 94, 173108 (2009). [CrossRef]
  11. G. E. Cirlin, A. D. Bouravleuv, I. P. Soshnikov, Y. B. Samsonenko, V. G. Dubrovskii, E. M. Arakcheeva, E. M. Tanklevskaya, and P. Werner, “Photovoltaic properties of p-doped GaAs nanowire arrays grown on n-type GaAs(111)B substrate,” Nanoscale Res. Lett. 5, 360–363 (2010). [CrossRef]
  12. J. A. Czaban, D. A. Thompson, and R. R. LaPierre, “GaAs Coreshell nanowires for photovoltaic applications,” Nano Lett. 9, 148–154 (2009). [CrossRef] [PubMed]
  13. C.-H. Sun, B. J. Ho, B. Jiang, and P. Jiang, “Biomimetic subwavelength antireflective gratings on GaAs,” Opt. Lett. 33, 2224–2226 (2008). [CrossRef] [PubMed]
  14. Y. M. Song, S. J. Jang, J. S. Yu, and Y. T. Lee, “Bioinspired parabola subwavelength structures for improved broadband antireflection,” Small 6, 984–987 (2010). [CrossRef] [PubMed]
  15. L. Wen, Z. Zhao, X. Li, Y. Shen, H. Guo, and Y. Wang, “Theoretical analysis and modeling of light trapping in high efficicency GaAs nanowire array solar cells,” Appl. Phys. Lett. 99, 143116 (2011). [CrossRef]
  16. H. Guo, L. Wen, X. Li, Z. Zhao, and Y. Wang, “Analysis of optical absorption in GaAs nanowire arrays,” Nanoscale Res. Lett. 6, 617 (2011). [CrossRef] [PubMed]
  17. N. Huang, C. Lin, and M. L. Povinelli, “Broadband absorption of semiconductor nanowire arrays for photovoltaic applications,” J. Opt. 14, 024004 (2012). [CrossRef]
  18. “Solar spectral irradiance: Air mass 1.5”.
  19. W. Shockley and H. J. Queisser, “Detailed balance limit of efficiency of p-n junction solar cells,” J. Appl. Phys. 32, 510–519 (1961). [CrossRef]
  20. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1997).
  21. J. Berenger, “A perfectly matched layer for the absorption of electromagnetic waves,” J. Comput. Phys. 114, 185–200 (1994). [CrossRef]
  22. L. Cao, J. S. White, J. Park, J. A. Schuller, B. M. Clemens, and M. L. Brongersma, “Engineering light absorption in semiconductor nanowire devices,” Nat. Mater. 8, 643–647 (2009). [CrossRef] [PubMed]
  23. B. Wang and P. W. Leu, “Tunable and selective resonant absorption in vertical nanowires,” Opt. Lett. 37, 3756–3758 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited