OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S4 — Jun. 30, 2014
  • pp: A1112–A1127

Energy streamlines in near-field radiative heat transfer between hyperbolic metamaterials

T. J. Bright, X. L. Liu, and Z. M. Zhang  »View Author Affiliations


Optics Express, Vol. 22, Issue S4, pp. A1112-A1127 (2014)
http://dx.doi.org/10.1364/OE.22.0A1112


View Full Text Article

Enhanced HTML    Acrobat PDF (1872 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Metallodielectric photonic crystals having hyperbolic dispersions are called indefinite materials because of their ability to guide modes with extremely large lateral wavevectors. While this is useful for enhancing near-field radiative heat transfer, it could also give rise to large lateral displacements of the energy pathways. The energy streamlines can be used to depict the flow of electromagnetic energy through a structure when wave propagation does not follow ray optics. We obtain the energy streamlines through two semi-infinite uniaxial anisotropic effective medium structures, separated by a small vacuum gap, using the Green functions and fluctuation-dissipation theorem. The lateral shifts are determined from the streamlines within two penetration depths. For hyperbolic modes, the predicted lateral shift can be several thousand times of the vacuum gap width.

© 2014 Optical Society of America

OCIS Codes
(160.1190) Materials : Anisotropic optical materials
(260.2160) Physical optics : Energy transfer
(160.3918) Materials : Metamaterials
(050.5298) Diffraction and gratings : Photonic crystals

ToC Category:
Energy Transfer

History
Original Manuscript: April 1, 2014
Revised Manuscript: May 14, 2014
Manuscript Accepted: May 15, 2014
Published: June 2, 2014

Citation
T. J. Bright, X. L. Liu, and Z. M. Zhang, "Energy streamlines in near-field radiative heat transfer between hyperbolic metamaterials," Opt. Express 22, A1112-A1127 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S4-A1112


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. S. A. Ramakrishna, J. B. Pendry, M. C. K. Wiltshire, and W. J. Stewart, “Imaging the near field,” J. Mod. Opt.50(9), 1419–1430 (2003). [CrossRef]
  2. R. Wangberg, J. Elser, E. E. Narimanov, and V. A. Podolskiy, “Nonmagnetic nanocomposites for optical and infrared negative-refractive-index media,” J. Opt. Soc. Am. B23(3), 498–505 (2006). [CrossRef]
  3. J. Schilling, “Uniaxial metallo-dielectric metamaterials with scalar positive permeability,” Phys. Rev. E Stat. Nonlin. Soft Matter Phys.74(4), 046618 (2006). [CrossRef] [PubMed]
  4. H. Shin and S. Fan, “All-angle negative refraction and evanescent wave amplification using onedimensional metallodielectric photonic crystals,” Appl. Phys. Lett.89(15), 151102 (2006). [CrossRef]
  5. D. de Ceglia, M. A. Vincenti, M. G. Cappeddu, M. Centini, N. Akozbek, A. D’Orazio, J. W. Haus, M. J. Bloemer, and M. Scalora, “Tailoring metallodielectric structures for superresolution and superguiding applications in the visible and near-IR ranges,” Phys. Rev. A77(3), 033848 (2008). [CrossRef]
  6. A. J. Hoffman, L. Alekseyev, S. S. Howard, K. J. Franz, D. Wasserman, V. A. Podolskiy, E. E. Narimanov, D. L. Sivco, and C. Gmachl, “Negative refraction in semiconductor metamaterials,” Nat. Mater.6(12), 946–950 (2007). [CrossRef] [PubMed]
  7. A. Fang, T. Koschny, and C. M. Soukoulis, “Optical anisotropic metamaterials: Negative refraction and focusing,” Phys. Rev. B79(24), 245127 (2009). [CrossRef]
  8. H. N. S. Krishnamoorthy, Z. Jacob, E. Narimanov, I. Kretzschmar, and V. M. Menon, “Topological transitions in metamaterials,” Science336(6078), 205–209 (2012). [CrossRef] [PubMed]
  9. J. Yao, Z. Liu, Y. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy, and X. Zhang, “Optical negative refraction in bulk metamaterials of nanowires,” Science321(5891), 930 (2008). [CrossRef] [PubMed]
  10. M. A. Noginov, Y. A. Barnakov, G. Zhu, T. Tumkur, H. Li, and E. E. Narimanov, “Bulk photonic metamaterial with hyperbolic dispersion,” Appl. Phys. Lett.94(15), 151105 (2009). [CrossRef]
  11. A. Orlov, I. Iorsh, P. Belov, and Y. Kivshar, “Complex band structure of nanostructured metal-dielectric metamaterials,” Opt. Express21(2), 1593–1598 (2013). [CrossRef] [PubMed]
  12. A. Narayanaswamy and G. Chen, “Thermal emission control with one-dimensional metallodielectric photonic crystals,” Phys. Rev. B70(12), 125101 (2004). [CrossRef]
  13. S.-A. Biehs, P. Ben-Abdallah, F. S. S. Rosa, K. Joulain, and J.-J. Greffet, “Nanoscale heat flux between nanoporous materials,” Opt. Express19(S5Suppl 5), A1088–A1103 (2011). [CrossRef] [PubMed]
  14. S.-A. Biehs, M. Tschikin, and P. Ben-Abdallah, “Hyperbolic metamaterials as an analog of a blackbody in the near field,” Phys. Rev. Lett.109(10), 104301 (2012). [CrossRef] [PubMed]
  15. S.-A. Biehs, M. Tschikin, R. Messina, and P. Ben-Abdallah, “Super-Planckian near-field thermal emission with phonon-polaritonic hyperbolic metamaterials,” Appl. Phys. Lett.102(13), 131106 (2013). [CrossRef]
  16. Y. Guo, C. L. Cortes, S. Molesky, and Z. Jacob, “Broadband super-Planckian thermal emission from hyperbolic metamaterials,” Appl. Phys. Lett.101(13), 131106 (2012). [CrossRef]
  17. Y. Guo and Z. Jacob, “Thermal hyperbolic metamaterials,” Opt. Express21(12), 15014–15019 (2013). [CrossRef] [PubMed]
  18. X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field thermal radiation between hyperbolic metamaterials: graphite and carbon nanotubes,” Appl. Phys. Lett.103(21), 213102 (2013). [CrossRef]
  19. X. L. Liu, R. Z. Zhang, and Z. M. Zhang, “Near-field radiative heat transfer with doped-silicon nanostructured metamaterials,” Int. J. Heat Mass Transfer73, 389–398 (2014). [CrossRef]
  20. K. Joulain, J.-P. Mulet, F. Marquier, R. Carminati, and J.-J. Greffet, “Surface electromagnetic waves thermally excited: Radiative heat transfer, coherence properties and Casimir forces revisited in the near field,” Surf. Sci. Rep.57(3-4), 59–112 (2005). [CrossRef]
  21. Z. M. Zhang, Nano/Microscale Heat Transfer (McGraw-Hill, New York, 2007).
  22. K. Park and Z. M. Zhang, “Fundamentals and applications of near-field radiative energy transfer,” Frontiers Heat Mass Transfer4(1), 013001 (2013). [CrossRef]
  23. S. Shen, “Experimental studies of radiative heat transfer between bodies at small separations,” Annu. Rev. Heat Transfer16(1), 327–343 (2013). [CrossRef]
  24. Z. M. Zhang and B. J. Lee, “Lateral shift in photon tunneling studied by the energy streamline method,” Opt. Express14(21), 9963–9970 (2006). [CrossRef] [PubMed]
  25. B. J. Lee, K. Park, and Z. M. Zhang, “Energy pathways in nanoscale thermal radiation,” Appl. Phys. Lett.91(15), 153101 (2007). [CrossRef]
  26. B. J. Lee and Z. M. Zhang, “Lateral shifts in near-field thermal radiation with surface phonon polaritons,” Nanoscale Microscale Thermophys. Eng.12(3), 238–250 (2008). [CrossRef]
  27. S. Basu, L. P. Wang, and Z. M. Zhang, “Direct calculation of energy streamlines in near-field thermal radiation,” J. Quant. Spectrosc. Radiat. Transf.112(7), 1149–1155 (2011). [CrossRef]
  28. S. Basu and Z. M. Zhang, “Ultrasmall penetration depth in nanoscale thermal radiation,” Appl. Phys. Lett.95(13), 133104 (2009). [CrossRef]
  29. S. Basu and M. Francoeur, “Penetration depth in near-field radiative heat transfer between metamaterials,” Appl. Phys. Lett.99(14), 143107 (2011). [CrossRef]
  30. X. L. Liu and Z. M. Zhang, “Metal-free low-loss negative refraction in the mid-infrared region,” Appl. Phys. Lett.103(10), 103101 (2013). [CrossRef]
  31. M. Tschikin, S.-A. Biehs, R. Messina, and P. Ben-Abdallah, “On the limits of the effective description of hyperbolic materials in the presence of surface waves,” J. Opt.15(10), 105101 (2013). [CrossRef]
  32. X. L. Liu, T. J. Bright, and Z. M. Zhang, “Application conditions of effective medium theory in near-field radiative heat transfer between multilayered metamaterials,” J. Heat Transfer. in press.
  33. S. Barkeshli, “On the electromagnetic dyadic Green’s functions for planar multi-layered anistropic uniaxial material media,” Int. J. Infrared Millim. Waves13(4), 507–527 (1992). [CrossRef]
  34. A. Eroglu, Y. H. Lee, and J. K. Lee, “Dyadic Green’s functions for multi-layered uniaxially anisotropic media with arbitrarily oriented optic axes,” IET Microwaves Antennas Propag.5(15), 1779–1788 (2011). [CrossRef]
  35. S. M. Rytov, Y. A. Kravtsov, and V. I. Tatarskii, Principles of Statistical Radiophysics 3: Elements of Random Fields (Springer, Berlin, 1989).
  36. M. Francoeur, M. Pinar Mengüç, and R. Vaillon, “Solution of near-field thermal radiation in one-dimensional layered media using dyadic Green’s functions and the scattering matrix method,” J. Quant. Spectrosc. Radiat. Transf.110(18), 2002–2018 (2009). [CrossRef]
  37. J. E. Sipe, “New Green-function formalism for surface optics,” J. Opt. Soc. Am. B4(4), 481–489 (1987). [CrossRef]
  38. J. Lee and J. Kong, “Dyadic Green’s functions for layered anisotropic medium,” Electromagnetics3(2), 111–130 (1983). [CrossRef]
  39. X. L. Liu, L. P. Wang, and Z. M. Zhang, “Wideband tunable omnidirectional infrared absorbers based on doped-silicon nanowire arrays,” J. Heat Transfer135(6), 061602 (2013). [CrossRef]
  40. A. Narayanaswamy and G. Chen, “Direct computation of thermal emission from nanostructures,” Annu. Rev. Heat Transfer14(14), 169–195 (2005). [CrossRef]
  41. K. Park, S. Basu, W. P. King, and Z. M. Zhang, “Performance analysis of near-field thermophotovoltaic devices considering absorption distribution,” J. Quant. Spectrosc. Radiat. Transf.109(2), 305–316 (2008). [CrossRef]
  42. L. P. Wang, S. Basu, and Z. M. Zhang, “Direct and indirect methods for calculating thermal emission from layered structures with nonuniform temperatures,” J. Heat Transfer133(7), 072701 (2011). [CrossRef]
  43. D. M. F. Chapman, “Using streamlines to visualize acoustic energy flow across boundaries,” J. Acoust. Soc. Am.124(1), 48–56 (2008). [CrossRef] [PubMed]
  44. O. A. Godin, “Wave refraction at an interface: Snell’s law versus Chapman’s law,” J. Acoust. Soc. Am.125(4), EL117–EL122 (2009). [CrossRef] [PubMed]
  45. H. F. Schouten, T. D. Visser, and D. Lenstra, “Optical vortices near sub-wavelength structures,” J. Opt. B Quantum Semiclassical Opt.6(5), S404–S409 (2004). [CrossRef]
  46. M. V. Bashevoy, V. A. Fedotov, and N. I. Zheludev, “Optical whirlpool on an absorbing metallic nanoparticle,” Opt. Express13(21), 8372–8379 (2005). [CrossRef] [PubMed]
  47. S. Basu, B. J. Lee, and Z. M. Zhang, “Infrared radiative properties of heavily doped silicon at room temperature,” J. Heat Transfer132(2), 023301 (2010). [CrossRef]
  48. E. D. Palik, Handbook of Optical Constants of Solids (Academic Press, San Diego, 1998).
  49. S. Lang, M. Tschikin, S.-A. Biehs, A. Yu. Petrov, and M. Eich, “Large penetration depth of near-field heat flux in hyperbolic media,” Appl. Phys. Lett.104(12), 121903 (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited