OSA's Digital Library

Energy Express

Energy Express

  • Editor: Christian Seassal
  • Vol. 22, Iss. S4 — Jun. 30, 2014
  • pp: A1145–A1152

Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance

Sangjun Lee, Daniel R. Mason, Sungjun In, and Namkyoo Park  »View Author Affiliations


Optics Express, Vol. 22, Issue S4, pp. A1145-A1152 (2014)
http://dx.doi.org/10.1364/OE.22.0A1145


View Full Text Article

Enhanced HTML    Acrobat PDF (1337 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose and numerically investigate the optical performance of a novel plasmonic organic solar cell with metallic nanowire electrodes embedded within the active layer. A significant improvement (~15%) in optical absorption over both a conventional ITO organic solar cell and a conventional plasmonic organic solar cell with top-loaded metallic grating is predicted in the proposed structure. Optimal positioning of the embedded metal electrodes (EME) is shown to preserve the condition for their strong plasmonic coupling with the metallic back-plane, meanwhile halving the hole path length to the anode which allows for a thicker active layer that increases the optical path length of propagating modes. With a smaller sheet resistance than a typical 100 nm thick ITO film transparent electrode, and an increased optical absorption and hole collection efficiency, our EME scheme could be an excellent alternative to ITO organic solar cells.

© 2014 Optical Society of America

OCIS Codes
(040.5350) Detectors : Photovoltaic
(310.6860) Thin films : Thin films, optical properties
(350.6050) Other areas of optics : Solar energy
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Light Trapping for Photovoltaics

History
Original Manuscript: April 22, 2014
Revised Manuscript: May 24, 2014
Manuscript Accepted: May 27, 2014
Published: June 10, 2014

Citation
Sangjun Lee, Daniel R. Mason, Sungjun In, and Namkyoo Park, "Embedding metal electrodes in thick active layers for ITO-free plasmonic organic solar cells with improved performance," Opt. Express 22, A1145-A1152 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-S4-A1145


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. M. Nam, J. Huh, and W. H. Jo, “Optimization of thickness and morphology of active layer for high performance of bulk-heterojunction organic solar cells,” Sol. Energy Mater. Sol. Cells94(6), 1118–1124 (2010). [CrossRef]
  2. N. Yeh and P. Yeh, “Organic solar cells: Their developments and potentials,” Renew. Sustain. Energy Rev.21, 421–431 (2013). [CrossRef]
  3. D. S. Hecht, L. Hu, and G. Irvin, “Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures,” Adv. Mater.23(13), 1482–1513 (2011). [CrossRef] [PubMed]
  4. C. J. M. Emmott, A. Urbina, and J. Nelson, “Environmental and economic assessment of ITO-free electrodes for organic solar cells,” Sol. Energy Mater. Sol. Cells97, 14–21 (2012). [CrossRef]
  5. J.-F. Salinas, H.-L. Yip, C.-C. Chueh, C.-Z. Li, J.-L. Maldonado, and A. K.-Y. Jen, “Optical Design of Transparent Thin Metal Electrodes to Enhance In-Coupling and Trapping of Light in Flexible Polymer Solar Cells,” Adv. Mater.24(47), 6362–6367 (2012). [CrossRef] [PubMed]
  6. B. O’Connor, C. Haughn, K.-H. An, K. P. Pipe, and M. Shtein, “Transparent and conductive electrodes based on unpatterned, thin metal films,” Appl. Phys. Lett.93(22), 223304 (2008). [CrossRef]
  7. J.-Y. Lee, S. T. Connor, Y. Cui, and P. Peumans, “Solution-Processed Metal Nanowire Mesh Transparent Electrodes,” Nano Lett.8(2), 689–692 (2008). [CrossRef] [PubMed]
  8. T. H. Reilly, J. van de Lagemaat, R. C. Tenent, A. J. Morfa, and K. L. Rowlen, “Surface-plasmon enhanced transparent electrodes in organic photovoltaics,” Appl. Phys. Lett.92(24), 243304 (2008). [CrossRef]
  9. S. Y. Chou and W. Ding, “Ultrathin, high-efficiency, broad-band, omni-acceptance, organic solar cells enhanced by plasmonic cavity with subwavelength hole array,” Opt. Express21(S1Suppl 1), A60–A76 (2013). [CrossRef] [PubMed]
  10. M.-G. Kang, T. Xu, H. J. Park, X. Luo, and L. J. Guo, “Efficiency Enhancement of Organic Solar Cells Using Transparent Plasmonic Ag Nanowire Electrodes,” Adv. Mater.22(39), 4378–4383 (2010). [CrossRef] [PubMed]
  11. I. Kim, T. S. Lee, D. S. Jeong, W. S. Lee, W. M. Kim, and K.-S. Lee, “Optical design of transparent metal grids for plasmonic absorption enhancement in ultrathin organic solar cells,” Opt. Express21(S4Suppl 4), A669–A676 (2013). [CrossRef] [PubMed]
  12. W. A. Luhman, S. H. Lee, T. W. Johnson, R. J. Holmes, and S.-H. Oh, “Self-assembled plasmonic electrodes for high-performance organic photovoltaic cells,” Appl. Phys. Lett.99(10), 103306 (2011). [CrossRef]
  13. E. Lee and C. Kim, “Analysis and optimization of surface plasmon-enhanced organic solar cells with a metallic crossed grating electrode,” Opt. Express20(S5Suppl 5), A740–A753 (2012). [CrossRef] [PubMed]
  14. J. G. Tait, B. J. Worfolk, S. A. Maloney, T. C. Hauger, A. L. Elias, J. M. Buriak, and K. D. Harris, “Spray coated high-conductivity PEDOT:PSS transparent electrodes for stretchable and mechanically-robust organic solar cells,” Sol. Energy Mater. Sol. Cells110, 98–106 (2013). [CrossRef]
  15. R. C. Tenent, T. M. Barnes, J. D. Bergeson, A. J. Ferguson, B. To, L. M. Gedvilas, M. J. Heben, and J. L. Blackburn, “Ultrasmooth, Large-Area, High-Uniformity, Conductive Transparent Single-Walled-Carbon-Nanotube Films for Photovoltaics Produced by Ultrasonic Spraying,” Adv. Mater.21(31), 3210–3216 (2009). [CrossRef]
  16. F. Bonaccorso, Z. Sun, T. Hasan, and A. C. Ferrari, “Graphene photonics and optoelectronics,” Nat. Photonics4(9), 611–622 (2010). [CrossRef]
  17. H. A. Atwater and A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater.9(3), 205–213 (2010). [CrossRef] [PubMed]
  18. S. V. Boriskina, H. Ghasemi, and G. Chen, “Plasmonic materials for energy: From physics to applications,” Mater. Today16(10), 375–386 (2013). [CrossRef]
  19. Q. Gan, F. J. Bartoli, and Z. H. Kafafi, “Plasmonic-Enhanced Organic Photovoltaics: Breaking the 10% Efficiency Barrier,” Adv. Mater.25(17), 2385–2396 (2013). [CrossRef] [PubMed]
  20. V. E. Ferry, J. N. Munday, and H. A. Atwater, “Design Considerations for Plasmonic Photovoltaics,” Adv. Mater.22(43), 4794–4808 (2010). [CrossRef] [PubMed]
  21. W. Bai, Q. Gan, G. Song, L. Chen, Z. Kafafi, and F. Bartoli, “Broadband short-range surface plasmon structures for absorption enhancement in organic photovoltaics,” Opt. Express18(S4Suppl 4), A620–A630 (2010). [CrossRef] [PubMed]
  22. C. Min, J. Li, G. Veronis, J.-Y. Lee, S. Fan, and P. Peumans, “Enhancement of optical absorption in thin-film organic solar cells through the excitation of plasmonic modes in metallic gratings,” Appl. Phys. Lett.96(13), 133302 (2010). [CrossRef]
  23. X. Li, W. C. H. Choy, L. Huo, F. Xie, W. E. I. Sha, B. Ding, X. Guo, Y. Li, J. Hou, J. You, and Y. Yang, “Dual Plasmonic Nanostructures for High Performance Inverted Organic Solar Cells,” Adv. Mater.24(22), 3046–3052 (2012). [CrossRef] [PubMed]
  24. E. D. Palik, Handbook of Optical Constants of Solids (Academic, New York, 1985).
  25. H. Hoppe, N. S. Sariciftci, and D. Meissner, “Optical constants of conjugated polymer/fullerene based bulk-heterojunction organic solar cells,” Mol. Cryst. Liq. Cryst. (Phila. Pa.)385(1), 113–119 (2002). [CrossRef]
  26. S. Lee, S. In, D. R. Mason, and N. Park, “Incorporation of nanovoids into metallic gratings for broadband plasmonic organic solar cells,” Opt. Express21(4), 4055–4060 (2013). [CrossRef] [PubMed]
  27. Comsol Multiphysics, http://www.comsol.com .
  28. P. B. Catrysse and S. Fan, “Nanopatterned Metallic Films for Use As Transparent Conductive Electrodes in Optoelectronic Devices,” Nano Lett.10(8), 2944–2949 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited