OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 4, Iss. 8 — Apr. 12, 1999
  • pp: 270–286

Comparison of imaging geometries for diffuse optical tomography of tissue

Brian W. Pogue, Troy O. McBride, Ulf L. Osterberg, and Keith D. Paulsen  »View Author Affiliations

Optics Express, Vol. 4, Issue 8, pp. 270-286 (1999)

View Full Text Article

Enhanced HTML    Acrobat PDF (594 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Images produced in six different geometries with diffuse optical tomography simulations of tissue have been compared using a finite element-based algorithm with iterative refinement provided by the Newton-Raphson approach. The source-detector arrangements studied include (i) fan-beam tomography, (ii) full reflectance and transmittance tomography, as well as (iii) sub-surface imaging, where each of these three were examined in a circular and a flat slab geometry. The algorithm can provide quantitatively accurate results for all of the tomographic geometries investigated under certain circumstances. For example, quantitatively accurate results occur with sub-surface imaging only when the object to be imaged is fully contained within the diffuse projections. In general the diffuse projections must sample all regions around the target to be characterized in order for the algorithm to recover quantitatively accurate results. Not only is it important to sample the whole space, but maximal angular sampling is required for optimal image reconstruction. Geometries which do not maximize the possible sampling angles cause more noise artifact in the reconstructed images. Preliminary simulations using a mesh of the human brain confirm that optimal images are produced from circularly symmetric source-detector distributions, but that quantitatively accurate images can be reconstructed even with a sub-surface imaging, although spatial resolution is modest.

© Optical Society of America

OCIS Codes
(100.3190) Image processing : Inverse problems
(110.6960) Imaging systems : Tomography
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues

ToC Category:
Focus Issue: Biomedical diffuse optical tomography

Original Manuscript: March 3, 1999
Published: April 12, 1999

Brian Pogue, Troy McBride, Ulf Osterberg, and Keith Paulsen, "Comparison of imaging geometries for diffuse optical tomography of tissue," Opt. Express 4, 270-286 (1999)

Sort:  Journal  |  Reset  


  1. M. Cope, and D. T. Delpy, "System for long-term measurement of cerebral blood and tissue oxygenation on newborn infants by near-infrared transillumination," Med. Biol. Eng. Comp. 26, 289-294 (1988). [CrossRef]
  2. B. Chance, Q. Luo, S. Nioka, D. C. Alsop and J. A. Detre, "Optical investigations of physiology: a study of intrinsic and extrinsic biomedical contrast," Phil. Trans. R. Soc. Lond. B 352, 707-716 (1997). [CrossRef]
  3. M. A. Franceschini, K. T. Moesta, S. Fantini, G. Gaida, E. Gratton, H. Jess, H., W. W. Mantulin, M. Seeber, P. Schlag and M. Kaschke, "Frequency-domain techniques enhance optical mammography: initial clinical results," Proc. Nat. Acad. Sci USA 94, 6468-73 (1997). [CrossRef] [PubMed]
  4. S. R. Arridge and M. Schweiger, "Sensitivity to prior knowledge in optical tomographic resconstruction," Proc. SPIE 2389, 378-388 (1995). [CrossRef]
  5. V. Ntziachristos, M. O,Leary, B. Chance and A. G. Yodh, "Coregistration of images from diffusive wave with other imaging modalities to enhance specificity," in OSA TOPS on Advances in Optical Imaging and Photon Migration II. (OSA publications, Orlando, FL, 1996).
  6. J. Chang, H. Graber, P. Koo, R. Aronson, S. S. Barbour, R. L. Barbour, "Optical imaging of anatomical maps derived from magnetic resonance images using time independent optical sources," IEEE Trans. Med. Imag. 16, 68-77 (1997). [CrossRef]
  7. B. W. Pogue and K.D. Paulsen, "High resolution near infrared tomographic imaging simulations of rat cranium using apriori MRI structural information," Opt. Lett. 23, 1716-8 (1998). [CrossRef]
  8. C. L. Hutchinson, J.R. Lakowicz, and E.M. Sevick-Muraca, "Fluorescence lifetime-based sensing in tissues: a computational study," Biophys. J. 68, 1574-1582 (1995). [CrossRef] [PubMed]
  9. J. Chang, H.L. Graber, and R.L. Barbour, "Luminescence optical tomography of dense scattering media," J. Opt. Soc. Am. A 14, 288-99 (1998). [CrossRef]
  10. S. R. Arridge, "Forward and inverse problems in time-resolved infrared imaging," in Medical Optical Tomography: Functional Imaging and Monitoring, Ed. G. Muller, (SPIE Optical Eng. Press, Bellingham, WA, 1993) pp. 35-64.
  11. D. Boas, "A fundamental limitation of linearized algorithms for diffuse optical tomography," Opt. Express 1, 404-413 (1997). (http://epubs.osa.org/oearchive/source/2831.htm) [CrossRef] [PubMed]
  12. H. Jiang, K. D. Paulsen, U. L. Osterberg and M. S. Patterson, "Frequency-domain optical image reconstruction in turbid media: an experimental study of single-target detectability," Appl. Opt. 36, 52-63 (1997). [CrossRef] [PubMed]
  13. H. Jiang, K. D. Paulsen, U. L. Osterberg, and M. S. Patterson, "Frequency-domain optical image reconstruction for breast imaging: initial evaluation in multi-target tissue-like phantoms," Med. Phys. 25, 183-193 (1997). [CrossRef]
  14. B. W. Pogue, M. Testorf, U. L. Osterberg and K. D. Paulsen, "Instrumentation and design of a frequency-domain diffuse optical tomography imager for breast cancer detection," Opt. Express 1, 391-403 (1997). (http://epubs.osa.org/oearchive/source/2827.htm) [CrossRef] [PubMed]
  15. B. W. Pogue, T. O. McBride, J. Prewitt, U. L. Osterberg, and K. D. Paulsen, "Spatially variant regularization improves diffuse optical tomography," Appl. Opt. 38, (in press) 1999. [CrossRef]
  16. T. O. McBride, B. W. Pogue, E. Gerety, S. Poplack, U. L. Osterberg, and K. D. Paulsen, "Spectroscopic diffuse optical tomography for quantitatively assessing hemoglobin concentration and oxygenation in tissue," (submitted, 1999).
  17. M. S. Patterson, B. Chance and B. C. Wilson, "Time resolved reflectance and transmittances for the non-invasive measurement of tissue optical properties," Appl. Opt. 28, 2331-2336 (1989). [CrossRef] [PubMed]
  18. S. R. Arridge, M. Cope and D. T. Delpy, "The theoretical basis for the determination of optical pathlengths in tissue: temporal and frequency analysis," Phys. Med. Biol. 37, 1531-1560 (1992). [CrossRef] [PubMed]
  19. A. H. Gandjbakhche, V. Chernomordik, R.F. Bonner, J. C. Hebden, R. Nossal, "Use of time-dependent contrast functions to discriminate between the scattering and absorption properties of abnormal regions hidden within a tissue-like phantom," Proc. SPIE 2979, 211-225 (1997). [CrossRef]
  20. J. A. Moon, R. Mahon, M. D. Duncan and J. Reintjes, "Resolution limits for imaging through turbid media with diffuse light," Opt. Lett. 18, 1591-1593 (1993). [CrossRef] [PubMed]
  21. A. H. Gandjbakhche, R. Nossal and R. F. Bonner, "Resolution limits for optical transillumination of abnormalities deeply embedded in tissues," Med. Phys. 21, 185-91 (1994). [CrossRef] [PubMed]
  22. D. A. Boas, M. A. OLeary, B. Chance and A. G. Yodh, "Detection and characterization of optical inhomogeneities with diffuse photon density waves: a signal-to-noise analysis," Appl. Opt. 36, 75-92 (1997). [CrossRef] [PubMed]
  23. H. Jess, H. Erdl, T. Moesta, S. Fantini, M. A. Francecshini, E. Gratton and M. Kaschke, "Intensity modulated breast imaging: Technology and clinical pilot study results," Adv. in Optical Imaging and Photon Migration. (OSA publications, Orlando, FL, 1996).
  24. S. Fantini, O. Schutz, J. Edler, M. A. Franceschini, S. Heywang-Krbrunner, L. Gotz and H. Siebold, "Performance of N-Images and spectral features in frequency-domain optical mammography," SPIE Technical Abstract Digest. (SPIE Press, San Jose, CA, 1999).
  25. Y. Painchaud, A. Mailloux, E. Harvey, S. Verrault, J. Frechette, C. Gilbert, M. L. Vernon and P. Beaudry, "Multi-port time-domain laser mammography: results on solid phantoms and volunteers," SPIE BiOS Technical Abstract Digest. (SPIE Press, San Jose, CA, 1999).
  26. J. P. Van Houten, D. A. Benaron, S. Spilman and D. K. Stevenson, "Imaging brain injury using time-resolved near infrared light scanning," Pediat. Res. 39, 470-6 (1996). [CrossRef] [PubMed]
  27. M. R. Stankovic, A. Fujii, D. Maulik and D. Boas, "Optical monitoring of cerebral hemodynamics and oxygenation in the neonatal piglet," J. Matern-Fetal Inves. 8, 71-8 (1998).
  28. A. Siegel, J. Marota, J. Mandeville, B. Rosen, and D. Boas, "Diffuse optical tomography of rat brain function," in SPIE Technical Abstract Digest. (SPIE Press, San Jose, CA, 1999).
  29. S. Fantini, S. Walker, M. A. Franceschini, M. Kaschke, P. M. Schlag and K. T. Moesta, "Assessment of the size, position, and optical properties of breast tumors in vivo by noninvasive optical methods," Appl. Opt. 37, 1982- 89 (1998). [CrossRef]
  30. V. Quaresima, S. J. Matcher and M. Ferrari, "Identification and quantification of intrinsic optical contrast for near-infrared mammography," Photochem. Photobiol. 67, 4-14 (1998). [CrossRef] [PubMed]
  31. X. Li, J. Culver, J., T. Durduran, B. Chance, A. G. Yodh and D. N. Pattanayak, "Diffraction tomography with diffuse-photon density waves: clinical studies and background subtraction," in Advances in Optical Imaging and Photon Migration. (OSA publications, Orlando, FL, 1993).
  32. S. B. Colak, D. G. Papaioannou, G. W. t'Hooft, M. B. van der Mark, H. Schomberg, J. C. J. Paasschens, J. B. M. Melissen and N. A. A. J. van Asten, "Tomographic image reconstruction from optical projections in light-diffusing media," Appl. Opt. 36, 180-213 (1997). [CrossRef] [PubMed]
  33. S. R. Arridge and M. Schwieger, "Gradient-based optimisation scheme for optical tomography," Opt. Exp. 2, 212-226 (1998). (http://epubs.osa.org/oearchive/source/4014.htm) [CrossRef]
  34. J. C. Hebden, F. E. W. Schmidt, M. E. Fry, M. Schweiger, E. M. C. Hillman, and D. T. Delpy, "Simultaneous reconstruction of absorption and scattering images using multi-channel measurement of purely temporal data," Opt. Lett, 1999. [CrossRef]
  35. B. J. Tromberg, O. Coquoz, J. B. Fishkin, T. Pham, E. R. Anderson, J. Butler, M. Cahn, J. D. Gross, V. Venugopalan and D. Pham, "Non-invasive measurements of breast tissue optical properties using frequency-domain photon migration," Phil. Trans. R. Soc. Lond. B. 352, 661-668 (1997).
  36. S. R. Arridge and M. Schweiger, "Inverse methods for optical tomography," in Information Processing in Medical Imaging (Springer-Verlag, Flagstaff, AZ, 1993). [CrossRef] [PubMed]
  37. K. D. Paulsen and H. Jiang "Spatially varying optical property reconstruction using a finite element diffusion equation approximation," Med. Phys. 22, 691-701 (1995). [CrossRef]
  38. S. R. Arridge and M. Schweiger, "Image reconstruction in optical tomography," Phil. Trans. R. Soc. Lond. B. 352, 717-726 (1997). [CrossRef]
  39. A. Neumaier, "Solving ill-conditioned and singular linear systems: a tutorial on regularization," SIAM Rev. 40, 636-666 (1998). [CrossRef] [PubMed]
  40. T. J. Yorkey, J. G. Webster and W. J. Tompkins, "Comparing reconstruction algorithms for electrical impedance tomography," IEEE Trans. Biomed. Eng. 34, 843-852 (1987). [CrossRef]
  41. B. W. Pogue, T. O. McBride, C. Nwaigwe, U. L. Osterberg, J. F. Dunn, K. D. Paulsen, "Near-infrared diffuse tomography with apriori MRI structural information: testing a hybrid image reconstruction methodology with functional imaging of the rat cranium," Proc. SPIE 3597 (in press), (1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (40 KB)     
» Media 2: MOV (32 KB)     
» Media 3: MOV (40 KB)     
» Media 4: MOV (39 KB)     
» Media 5: MOV (35 KB)     
» Media 6: MOV (35 KB)     
» Media 7: MOV (34 KB)     
» Media 8: MOV (37 KB)     
» Media 9: MOV (43 KB)     
» Media 10: MOV (46 KB)     
» Media 11: MOV (26 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited