OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 8, Iss. 7 — Mar. 26, 2001
  • pp: 377–382

Time-dependent density functional theory applied to nonsequential multiple ionization of Ne at 800 nm

D. Bauer and F. Ceccherini  »View Author Affiliations

Optics Express, Vol. 8, Issue 7, pp. 377-382 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (168 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Time-dependent density functional theory (TDDFT) is employed to study the interaction of a Ne atom with short and strong 800 nm laser pulses. In the intensity regime covered (1014–1016 W/cm2) up to triply ionized Ne is observed. Good quantitative agreement with the experimental Ne+ ion-yield (and the Ne2+-yield near saturation) is obtained. Nonsequential ionization (NSI) leads to a strong increase of the probability for double and triple ionization when compared to a single active electron (SAE)-approach. A NSI-“knee” is observed but the agreement with its experimental counterpart is not satisfactory.

© Optical Society of America

OCIS Codes
(020.4180) Atomic and molecular physics : Multiphoton processes
(270.4180) Quantum optics : Multiphoton processes

ToC Category:
Focus Issue: Laser-induced multiple ionization

Original Manuscript: February 5, 2001
Published: March 26, 2001

Dieter Bauer and F. Ceccherini, "Time-dependent density functional theory applied to nonsequential multiple ionization of Ne at 800 nm," Opt. Express 8, 377-382 (2001)

Sort:  Journal  |  Reset  


  1. D. N. Fittinghoff, P. R. Bolton, B. Chang, and K. C. Kulander, "Observation of nonsequential double ionization of helium with optical tunneling," Phys. Rev. Lett. 69, 2642-2645 (1992). [CrossRef] [PubMed]
  2. R. M. Dreizler and E. K. U. Gross, "Density Functional Theory: An Approach to the Quantum Many-Body Problem," (Springer, Berlin, 1990).
  3. Erich Runge and E. K. U. Gross, "Density-Functional Theory for Time-Dependent Systems," Phys. Rev. Lett. 52, 997-1000 (1984). [CrossRef]
  4. Miroslaw Brewczyk, Kazimierz Rzazewski, and Charles W. Clark, "Appearance intensities for multiply charged ions in a strong laser field," Phys. Rev. A 52, 1468-1473 (1995). [CrossRef] [PubMed]
  5. H. G. Muller, "An Efficient Propagation Scheme for the Time-Dependent Schroedinger Equation in the Velocity Gauge," Laser Physics 9, 138-148 (1999).
  6. S. Larochelle, A. Talebpour and S. L. Chin, "Non-sequential multiple ionization of rare gas atoms in a Ti:Sapphire laser field," J. Phys. B: At. Mol. Opt. Phys. 31, 1201-1214 (1998). [CrossRef]
  7. J. B. Watson, A. Sanpera, D. G. Lappas, P. L. Knight, and K. Burnett, "Nonsequential Double Ionization of Helium," Phys. Rev. Lett. 78, 1884-1887 (1997). [CrossRef]
  8. C. A. Ullrich and E. K. U. Gross, "Many-electron atoms in strong femto-second laser pulses: A density-functional study," Comm. At. Mol. Phys. 33, 211 (1997).
  9. B. Walker, B. Sheehy, L. F. DiMauro, P. Agostini, K. J. Schafer, and K. C. Kulander, "Precision Measurement of Strong Field Double Ionization of Helium," Phys. Rev. Lett. 73, 1227-1230 (1994). [CrossRef] [PubMed]
  10. M. Petersilka and E. K. U. Gross, "Strong-Field Double Ionization of Helium: A Density-Functional Perspective," Laser Physics 9, 105-114 (1999).
  11. A. Becker and F. H. M. Faisal, "S-matrix analysis of ionization yields of noble gas atoms at the focus of Ti:sapphire laser pulses," J. Phys. B: At. Mol. Opt. Phys. 32, L335-L343 (1999). [CrossRef]
  12. U. Eichmann, M. Doerr, H. Maeda, W. Becker, and W. Sandner, "Collective Multielectron Tunneling Ionization in Strong Fields," Phys. Rev. Lett. 84, 3550-3553 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited