OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 9, Iss. 13 — Dec. 17, 2001
  • pp: 698–713

Microstructured optical fiber devices

B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale  »View Author Affiliations

Optics Express, Vol. 9, Issue 13, pp. 698-713 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (1355 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present several applications of microstructured optical fibers and study their modal characteristics by using Bragg gratings inscribed into photosensitive core regions designed into the air-silica microstructure. The unique characteristics revealed in these studies enable a number of functionalities including tunability and enhanced nonlinearity that provide a platform for fiber device applications. We discuss experimental and numerical tools that allow characterization of the modes of the fibers.

© Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(060.2270) Fiber optics and optical communications : Fiber characterization
(160.5470) Materials : Polymers
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Focus Issue: Photonic crystal fiber

Original Manuscript: October 31, 2001
Published: December 17, 2001

Benjamin Eggleton, Charles Kerbage, Paul Westbrook, Robert Windeler, and Arturo Hale, "Microstructured optical fiber devices," Opt. Express 9, 698-713 (2001)

Sort:  Journal  |  Reset  


  1. P. V. Kaiser and H. W. Astle, "Low-loss single-material fibers made from pure fused silica," The Bell System Technical Journal 53, 1021-1039 (1974).
  2. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, "Photonic crystal fibers: A new class of optical waveguides," Optical Fiber Technology 5, 305-330, (1999). [CrossRef]
  3. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, "All-silica single mode optical fiber with photonic crystal cladding," Opt. Lett. 21, 1547-1549, (1996). [CrossRef] [PubMed]
  4. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J. P. Sandro, "Photonic crystals as optical fibersphysics and applications," Optical Materials, 11, 143-151, (1999). [CrossRef]
  5. R. S. Windeler, J. L. Wagener, and D. J. DiGiovanni, "Silica-air microstructured fibers: Properties and applications," Optical Fiber Communications conference (Optical Society of America, Washington, D.C., 1999).
  6. T. A. Birks, J. C. Knight, and P. S. J. Russell, "Endlessly single-mode photonic crystal fiber," Opt. Lett. 22, 961-963, (1997). [CrossRef] [PubMed]
  7. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S. J. Russell, P. J. Roberts, and D. C. Allan, "Singlemode photonic bandgap guidance of light in air," Science 285, 1537-1539, (1999). [CrossRef] [PubMed]
  8. T. M. Monro, W. Belardi, K. Furusawa, J. C. Baggett, N. G. R. Broderick, and D. J. Richardson, "Sensing with microstructured optical fibres," Meas. Sci. and Tech. 12, 854-858, (2001). [CrossRef]
  9. R. Holzwarth, M. Zimmermann, Th. Udem, T. W. Hansch, P. Russbuldt, K. Gabel, R. Poprawe, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, "White-light frequency comb generation with a diodepumped Cr:LiSAF laser," Opt. Lett. 17, 1376-1378, (2001). [CrossRef]
  10. T. A. Birks, D. Mogilevstev, J. C. Knight, and P. S. . Russell, "Dispersion Compensation Using Single-Material Fibers," IEEE Phot. Tech. Lett. 11, 674-676, (1999). [CrossRef]
  11. J. K. Ranka, R. S. Windeler, and A. J. Stentz, "Optical properties of high-delta air-silica microstructure optical fibers," Opt. Lett. 25, 796-798, (2000). [CrossRef]
  12. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennet, "Holey optical fibers: An efficient modal model," J. Lightwave Tech. 17, 1093-1102, (1999). [CrossRef]
  13. J. C. Knight, T. A. Birks, R. F. Cregan, P. S. J. Russell, and J. P. Sandro, "Large mode area photonic crystals," Opt. Lett. 25, 25-27, (1998).
  14. T. Erdogan, "Fiber Grating Spectra," J. Lightwave Tech. 155, 1277-1294, (1997). [CrossRef]
  15. R. Kashyap, Fiber Bragg gratings, 1st ed. (Academic Press, 1999).
  16. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, and G. L. Burdge, "Cladding mode resonances in air-silica microstructure fiber," J. Lightwave Tech. 18, 1084-1100, (2000). [CrossRef]
  17. B. J. Eggleton, P. S. Westbrook, R. S. Windeler, S. Spalter, and T. A. Strasser, "Grating resonances in airsilica microstructured optical fibers," Opt. Lett. 24, 1460-1462, (1999). [CrossRef]
  18. C. Kerbage, B. J. Eggleton, P. S. Westbrook, and R. S. Windeler, "Experimental and scalar beam propagation analysis of an air-silica microstructure fiber," Opt. Express 7, 113-123, (2000), http://www.opticsexpress.org/oearchive/source/22997.htm [CrossRef] [PubMed]
  19. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, "Cladding-Mode Resonances in Hybrid Polymer-Silica Microstrucutred Optical Fiber Gratings," IEEE Phot. Tech. Lett. 12, 495-497, (2000). [CrossRef]
  20. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosin ski, X. Liu, and C. Xu, "Adiabatic Coupling in Tapered Air-Silica Microstructured Optical Fiber," IEEE Phot. Tech. Lett. 13, 52-54, (2001). [CrossRef]
  21. X. Liu, C. Xu, W. H. Knox, J. K. Chandalia, B. J. Eggleton, S. G. Kosinski, and R. S. Windeler, "Soliton self-frequency shift in a tapered air-silica microstructured fiber," Opt. Lett. 26, 358-360, (2000). [CrossRef]
  22. C. Kerbage, A. Hale, A. Yablon, R. S. Windeler, and B. J. Eggleton, "Integrated all-fiber variable attenuator based on hybrid microstructure fiber," Appl. Phys. Lett. 79, 3191-3193, (2001). [CrossRef]
  23. M. J. Steel, T. P. White, C. Martijn de Sterke, R. C. McPhedran, L. C. Botten, "Symmetry an degeneracy in microstructured optical fibers," Opt. Lett. 26, 488-490, (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited