OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 9, Iss. 13 — Dec. 17, 2001
  • pp: 733–747

Comparative study of air-core and coaxial Bragg fibers: single-mode transmission and dispersion characteristics

George Ouyang, Yong Xu, and Amnon Yariv  »View Author Affiliations


Optics Express, Vol. 9, Issue 13, pp. 733-747 (2001)
http://dx.doi.org/10.1364/OE.9.000733


View Full Text Article

Enhanced HTML    Acrobat PDF (637 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using an asymptotic formalism we developed in an earlier paper, we compare the dispersion properties of the air-core Bragg fiber with those of the coaxial Bragg fiber. In particular we are interested in the way the inner core of the coaxial fiber influence the dispersion relation. It is shown that, given appropriate structural parameters, large single-mode frequency windows with a zero-dispersion point can be achieved for the TM mode in coaxial fibers. We provide an intuitive interpretation based on perturbation analysis and the results of our asymptotic calculations are confirmed by Finite Difference Time Domain (FDTD) simulations.

© Optical Society of America

OCIS Codes
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Focus Issue: Photonic crystal fiber

History
Original Manuscript: November 7, 2001
Published: December 17, 2001

Citation
George Ouyang, Yong Xu, and Amnon Yariv, "Comparative study of air-core and coaxial Bragg fibers: single-mode transmission and dispersion characteristics," Opt. Express 9, 733-747 (2001)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-9-13-733


Sort:  Journal  |  Reset  

References

  1. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  2. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Lightwave Technol. 17, 2039-2041 (1999). [CrossRef]
  3. M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, "Fabrication of germanium-coated nickel hollow waveguides for infrared transmission," Appl. Phys. Lett. 43, 430-432 (1983). [CrossRef]
  4. N. Croitoru, J. Dror, and I. Gannot, "Characterization of hollow fibers for the transmission of infrared radiation," Appl. Opt. 29, 1805-1809 (1990). [CrossRef] [PubMed]
  5. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  6. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000). [CrossRef] [PubMed]
  7. Y. Xu, G. Ouyang, R. Lee, and A. Yariv, "Asymptotic matrix theory of Bragg fibers," (submitted to J. Lightwave Technol.).
  8. Roy J. Glauber and M. Lewenstein, "Quantum optics of dielectric media," Phy. Rev. A 43, 467-491 (1991). [CrossRef]
  9. F. Zepparelli, P. Mezzanotte, F. Alimenti, L. Roselli, R. Sorrentino, G. Tartarini, and P. Bassi, "Rigorous analysis of 3D optical and optoelectronic devices by the compact-2D-FDTD method." Opt. and Quantum Electron. 31, 827-841 (1999). [CrossRef]
  10. K. S. Yee, "Numerical solution of initial boundary value problems involving Maxwell's equations in isotropic media," IEEE Trans. Antennas Propag. AP-14, 302-307 (1966).
  11. J. P. Berenger, "A perfectly matched layer for the absorption of electromagnetic waves," J. Computat. Phys. 114, 185-200 (1994). [CrossRef]
  12. S. D. Gedney, "An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices," IEEE Trans. Antennas Propag. 44, 1630-1639 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited