OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 9, Iss. 13 — Dec. 17, 2001
  • pp: 748–779

Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers

Steven G. Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel D. Engeness, Marin Soljačić, Steven A. Jacobs, J. D. Joannopoulos, and Yoel Fink  »View Author Affiliations

Optics Express, Vol. 9, Issue 13, pp. 748-779 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (847 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present the light-propagation characteristics of OmniGuide fibers, which guide light by concentric multi-layer dielectric mirrors having the property of omnidirectional reflection. We show how the lowest-loss TE01 mode can propagate in a single-mode fashion through even large-core fibers, with other modes eliminated asymptotically by their higher losses and poor coupling, analogous to hollow metallic microwave waveguides. Dispersion, radiation leakage, material absorption, nonlinearities, bending, acircularity, and interface roughness are considered with the help of leaky modes and perturbation theory, and both numerical results and general scaling relations are presented. We show that cladding properties such as absorption and nonlinearity are suppressed by many orders of magnitude due to the strong confinement in a hollow core, and other imperfections are tolerable, promising that the properties of silica fibers may be surpassed even when nominally poor materials are employed.

© Optical Society of America

OCIS Codes
(060.2310) Fiber optics and optical communications : Fiber optics
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Focus Issue: Photonic crystal fiber

Original Manuscript: November 9, 2001
Published: December 17, 2001

Steven Johnson, Mihai Ibanescu, M. Skorobogatiy, Ori Weisberg, Torkel Engeness, Marin Soljacic, Steven Jacobs, J. Joannopoulos, and Yoel Fink, "Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers," Opt. Express 9, 748-779 (2001)

Sort:  Journal  |  Reset  


  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton, 1995).
  2. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. S.-J. Russell, and P. J. Roberts, "Single-mode photonic band gap guidance of light in air," Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  3. P. Yeh, A. Yariv, and E. Marom, "Theory of Bragg fiber," J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  4. N. J. Doran and K. J. Bulow, "Cylindrical Bragg fibers: a design and feasibility study for optical communications," J. Lightwave Tech. 1, 588-590 (1983). [CrossRef]
  5. A. N. Lazarchik, "Bragg fiber lightguides," Radiotekhnika i electronika 1, 36-43 (1988).
  6. C. M. de Sterke and I. M. Bassett, "Differential losses in Bragg fibers," J. Appl. Phys. 76, 680-688 (1994). [CrossRef]
  7. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, "Guiding optical light in air using an all-dielectric structure," J. Lightwave Tech. 17, 2039-2041 (1999). [CrossRef]
  8. F. Brechet, P. Roy, J. Marcou, and D. Pagnoux, "Singlemode propagation into depressed-core-index photonic-bandgap fibre designed for zero-dispersion propagation at short wavelengths," Elec. Lett. 36, 514-515 (2000). [CrossRef]
  9. F. Brechet, P. Leproux, P. Roy, J. Marcou, and D. Pagnoux, "Analysis of bandpass filtering behavior of singlemode depressed-core-index photonic bandgap fibre," Elec. Lett. 36, 870-872 (2000). [CrossRef]
  10. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, "An all-dielectric coaxial waveguide," Science 289, 415-419 (2000). [CrossRef] [PubMed]
  11. Y. Xu, R. K. Lee, and A. Yariv, "Asymptotic analysis of Bragg fibers," Opt. Lett. 25, 1756-1758 (2000). [CrossRef]
  12. T. Kawanishi and M. Izutsu, "Coaxial periodic optical waveguide," Opt. Express 7, 10-22 (2000), http://www.opticsexpress.org/oearchive/source/22933.htm. [CrossRef] [PubMed]
  13. Y. Xu and A. Yariv, "Asymptotic analysis of Bragg fibers and dielectric coaxial fibers," In Proc. SPIE, A. Dutta, A. A. S. Awwal, N. K. Dutta, and K. Okamoto, eds., 4532, 191-205 (2001). [CrossRef]
  14. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, "A dielectric omnidirectional reflector," Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  15. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic Press, London, London, 1998).
  16. E. A. Marcatili and R. A. Schmeltzer, "Hollow metallic and dielectric waveguides for long distance optical transmission and lasers," Bell Syst. Tech. J. 43, 1783-1809 (1964).
  17. W. D. Warters, "WT4 millimeter waveguide system: introduction," Bell Syst. Tech. J. 56, 1825-1827 (1977), the introduction to a special issue with many useful articles.
  18. M. Miyagi, A. Hongo, and S. Kawakami, "Transmission characteristics of dielectric-coated metallic waveguides for infrared transmission: slab waveguide model," IEEE J. Quantum Elec. QE-19, 136-145 (1983). [CrossRef]
  19. M. Miyagi and S. Kawakami, "Design theory of dielectric-coated circular metallic waveguides for infrared transmission," J. Lightwave Tech. 2, 116-126 (1984). [CrossRef]
  20. J. A. Harrington, "A review of IR transmitting, hollow waveguides," Fiber Integr. Opt. 19, 211-227 (2000). [CrossRef]
  21. M. Ibanescu et al., to be published in 2002.
  22. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  23. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  24. S. A. Jacobs et al., to be published in 2002.
  25. L. Gruner-Nielsen, S. N. Knudsen, B. Edvold, T. Veng, D. Magnussen, C. C. Larsen, and H. Damsgaard, "Dispersion compensating fibers," Opt. Fiber Tech. 6, 164-180 (2000). [CrossRef]
  26. W. H. Weber, S. L. McCarthy, and G. W. Ford, "Perturbation theory applied to gain or loss in an optical waveguide," Appl. Opt. 13, 715-716 (1974). [CrossRef]
  27. A. Kumar, S. I. Hosain, and A. K. Ghatak, "Propagation characteristics of weakly guiding lossy fibers: an exact and perturbation analysis," Optica Acta 28, 559-566 (1981). [CrossRef]
  28. Z. Pantic and R. Mittra, "Quasi-TEM analysis of microwave transmission lines by the finite-element method," IEEE Trans. Microwave Theory Tech. MTT-34, 1096-1103 (1986). [CrossRef]
  29. S. X. She, "Propagation loss in metal-clad waveguides and weakly absorptive waveguides by a perturbation method," Opt. Lett. 15, 900-902 (1990). [CrossRef] [PubMed]
  30. V. L. Gupta and E. K. Sharma, "Metal-clad and absorptive multilayer waveguides: an accurate perturbation analysis," J. Opt. Soc. Am. A 9, 953-956 (1992). [CrossRef]
  31. C. Themistos, B. M. A. Rahman, A. Hadjicharalambous, and K. T. V. Grattan, "Loss/gain characterization of optical waveguides," J. Lightwave Tech. 13, 1760-1765 (1995). [CrossRef]
  32. D. Sarid and G. I. Stegeman, "Optimization of the effects of power dependent refractive indices in optical waveguides," J. Appl. Phys. 52, 5439-5441 (1981). [CrossRef]
  33. V. P. Tzolov, M. Fontaine, N. Godbout, and S. Lacroix, "Nonlinear self-phase-modulation effects: a vectorial first-order perturbation approach," Opt. Lett. 20, 456-458 (1995). [CrossRef] [PubMed]
  34. R. S. Grant, "Effective non-linear coefficients in optical waveguides," Optical and Quantum Elec. 28, 1161-1173 (1996). [CrossRef]
  35. B. Z. Katsenelenbaum, L. Mercader del Rio, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. of Electrical Engineers, London, 1998). [CrossRef]
  36. L. Lewin, D. C. Chang, and F. Kuester, Electromagnetic Waves and Curved Structures (P. Peregrinus, England, 1977).
  37. M. Miyagi, K. Harada, and S. Kawakami, "Wave propagation and attenuation in the general class of circular hollow waveguides with uniform curvature," IEEE Trans. Microwave Theory Tech. MTT-32, 513-521 (1984). [CrossRef]
  38. J. D. Jackson, Classical Electrodynamics, 3rd ed. (Wiley, New York, 1998).
  39. M. Lohmeyer, N. Bahlmann, and P. Hertel, "Geometry tolerance estimation for rectangular dielectric waveguide devices by means of perturbation theory," Opt. Commun. 163, 86-94 (1999). [CrossRef]
  40. D. Q. Chowdhury and D. A. Nolan, "Perturbation model for computing optical fiber birefringence from a two-dimensional refractive-index profile," Opt. Lett. 20, 1973-1975 (1995). [CrossRef] [PubMed]
  41. D. Q. Chowdhury, "Comparison between optical fiber birefringence induced by stress anisotropy and geometric deformation," IEEE J. Selected Topics Quantum Elec. 6, 227-232 (2000). [CrossRef]
  42. V. P. Kalosha and A. P. Khapalyuk, "Mode birefringence in a single-mode elliptic optical fiber," Sov. J. Quantum Elec. 13, 109-111 (1983). [CrossRef]
  43. V. P. Kalosha and A. P. Khapalyuk, "Mode birefringence of a three-layer elliptic single-mode fiber waveguide," Sov. J. Quantum Elec. 14, 427-430 (1984). [CrossRef]
  44. M. Skorobogatiy et al., to be published in 2002.
  45. D. Marcuse, Theory of Dielectric Optical Waveguides (Academic, New York, 1974).
  46. Characteristics of a single-mode optical fibre cable (Intl. Telecom. Union, 2000), No. G.652.
  47. A. W. Snyder, "Radiation losses due to variations of radius on dielectric or optical fibers," IEEE Trans. Microwave Theory Tech. MTT-18, 608-615 (1970). [CrossRef]
  48. S. G. Johnson et al., to be published in 2002.
  49. C. Cohen-Tannoudji, B. Din, and F. Laloe, Quantum Mechanics (Hermann, Paris, 1977), Vol. One, ch. 2; and Vol. Two, ch. 11 and 13.
  50. L. A. Yudin, S. P. Efimov, M. I. Kapchinsky, and I. L. Korenev, "Electrodynamics as a problem of eigenvalues," Phys. Plasmas 3, 42-58 (1996). [CrossRef]
  51. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt Saunders, Philadelphia, 1976).
  52. A. Messiah, Quantum Mechanics: Vol. II (Wiley, New York, 1976), ch. 17.
  53. G. H. Song and W. J. Tomlinson, "Fourier analysis and synthesis of adiabatic tapers in integrated optics," J. Opt. Soc. Am. A 9, 1289-1300 (1992). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited