OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 25 — Dec. 11, 2006
  • pp: 12243–12254

Optics InfoBase > Optics Express > Volume 14 > Issue 25 > Simultaneous spatial and temporal focusing for axial scanning

Simultaneous spatial and temporal focusing for axial scanning

Michael E. Durst, Guanghao Zhu, and Chris Xu  »View Author Affiliations


Optics Express, Vol. 14, Issue 25, pp. 12243-12254 (2006)
http://dx.doi.org/10.1364/OE.14.012243


View Full Text Article

Enhanced HTML    Acrobat PDF (447 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We show theoretically and experimentally that simultaneous spatial and temporal focusing can scan the temporal focal plane axially by adjusting the group velocity dispersion in the excitation beam path. When the group velocity dispersion is small, the pulse width at the temporal focal plane is transform-limited, and the amount of shift depends linearly upon the dispersion. By adding a meter of large mode area fiber into the system, we demonstrate this axial scanning capability in a fiber delivery configuration. Because a transform-limited pulse width is automatically recovered at the temporal focal plane, simultaneous spatial and temporal focusing negates the need for any dispersion pre-compensation, further facilitating its integration into a fiber delivery system. A highly promising application for simultaneous spatial and temporal focusing is an axial scanning multiphoton fluorescence fiber probe without any moving parts at the distal end and without dispersion pre-compensation.

© 2006 Optical Society of America

OCIS Codes
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(180.5810) Microscopy : Scanning microscopy

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: October 16, 2006
Revised Manuscript: November 20, 2006
Manuscript Accepted: November 21, 2006
Published: December 11, 2006

Virtual Issues
Vol. 2, Iss. 1 Virtual Journal for Biomedical Optics

Citation
Michael E. Durst, Guanghao Zhu, and Chris Xu, "Simultaneous spatial and temporal focusing for axial scanning," Opt. Express 14, 12243-12254 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-25-12243


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. Denk, J. H. Strickler, and W. W. Webb, "2-Photon Laser Scanning Fluorescence Microscopy," Science 248,73-76 (1990). [CrossRef] [PubMed]
  2. J. C. Jung, and M. J. Schnitzer, "Multiphoton endoscopy," Opt. Lett. 28,902-904 (2003). [CrossRef] [PubMed]
  3. C. Liang, M. R. Descour, K. B. Sung, and R. Richards-Kortum, "Fiber confocal reflectance microscope (FCRM) for in-vivo imaging," Opt. Express 9,821-830 (2001). [CrossRef] [PubMed]
  4. K. B. Sung, C. N. Liang, M. Descour, T. Collier, M. Follen, and R. Richards-Kortum, "Fiber-optic confocal reflectance microscope with miniature objective for in vivo imaging of human tissues," IEEE Trans. Biomed. Eng. 49,1168-1172 (2002). [CrossRef] [PubMed]
  5. A. R. Rouse, A. Kano, J. A. Udovich, S. M. Kroto, and A. F. Gmitro, "Design and demonstration of a miniature catheter for a confocal microendoscope," Appl. Opt. 43,5763-5771 (2004). [CrossRef] [PubMed]
  6. W. Gobel, J. N. D. Kerr, A. Nimmerjahn, and F. Helmchen, "Miniaturized two-photon microscope based on a flexible coherent fiber bundle and a gradient-index lens objective," Opt. Lett. 29,2521-2523 (2004). [CrossRef] [PubMed]
  7. D. L. Dickensheets, and G. S. Kino, "Micromachined scanning confocal optical microscope," Opt. Lett. 21,764-766 (1996). [CrossRef] [PubMed]
  8. U. Hofmann, S. Muehlmann, M. Witt, K. Dorschel, R. Schutz, and B. Wagner, "Electrostatically driven micromirrors for a miniaturized confocal laser scanning microscope," Proceedings of SPIE 3878,29-38 (1999). [CrossRef]
  9. D. Bird, and M. Gu, "Two-photon fluorescence endoscopy with a micro-optic scanning head," Opt. Lett. 28,1552-1554 (2003). [CrossRef] [PubMed]
  10. F. Helmchen, M. S. Fee, D. W. Tank, and W. Denk, "A miniature head-mounted two-photon microscope: High-resolution brain imaging in freely moving animals," Neuron 31,903-912 (2001). [CrossRef] [PubMed]
  11. D. Kim, K. H. Kim, S. Yazdanfar, and P. T. C. So, "Optical biopsy in high-speed handheld miniaturized multifocal multiphoton microscopy," Proceedings of SPIE 5700,14-22 (2005). [CrossRef]
  12. D. Bird, and M. Gu, "Fibre-optic two-photon scanning fluorescence microscopy," J. Microsc. 208,35-48 (2002). [CrossRef] [PubMed]
  13. L. Giniunas, R. Juskaitis, and S. V. Shatalin, "Scanning Fiberoptic Microscope," Electron. Lett. 27,724-726 (1991). [CrossRef]
  14. A. R. Rouse, and A. F. Gmitro, "Multispectral imaging with a confocal microendoscope," Opt. Lett. 25,1708-1710 (2000). [CrossRef]
  15. B. Berge, and J. Peseux, "Variable focal lens controlled by an external voltage: An application of electrowetting," Eur. Phys. J. E 3,159-163 (2000). [CrossRef]
  16. S. Kuiper, and B. H. W. Hendriks, "Variable-focus liquid lens for miniature cameras," Appl. Phys. Lett. 85,1128-1130 (2004). [CrossRef]
  17. A. J. Wright, B. A. Patterson, S. P. Poland, J. M. Girkin, G. M. Gibson, and M. J. Padgett, "Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror," Opt. Express 14,222-228 (2006). [CrossRef] [PubMed]
  18. H. Suchowski, D. Oron, and Y. Silberberg, "Generation of a dark nonlinear focus by spatio-temporal coherent control," Opt. Commun. 264,482-487 (2006). [CrossRef]
  19. M. J. Levene, D. A. Dombeck, K. A. Kasischke, R. P. Molloy, and W. W. Webb, "In vivo multiphoton microscopy of deep brain tissue," J. Neurophysiol. 91,1908-1912 (2004). [CrossRef]
  20. B. A. Flusberg, J. C. Lung, E. D. Cocker, E. P. Anderson, and M. J. Schnitzer, "In vivo brain imaging using a portable 3.9 gram two-photon fluorescence microendoscope," Opt. Lett. 30,2272-2274 (2005). [CrossRef] [PubMed]
  21. Y. Yasuno, S. Makita, T. Yatagai, T. F. Wiesendanger, A. K. Ruprecht, and H. J. Tiziani, "Non-mechanically-axial-scanning confocal microscope using adaptive mirror switching," Opt. Express 11,54-60 (2003). [CrossRef] [PubMed]
  22. D. Oron, E. Tal, and Y. Silberberg, "Scanningless depth-resolved microscopy," Opt. Express 13,1468-1476 (2005). [CrossRef] [PubMed]
  23. G. H. Zhu, J. van Howe, M. Durst, W. Zipfel, and C. Xu, "Simultaneous spatial and temporal focusing of femtosecond pulses," Opt. Express 13,2153-2159 (2005). [CrossRef] [PubMed]
  24. O. E. Martinez, "Grating and prism compressors in the case of finite beam size," J. Opt. Soc. Am. B 3,929-934 (1986). [CrossRef]
  25. J. Goodman, Introduction to Fourier Optics (Roberts & Company, Englewood, Colorado, 2005).
  26. D. G. Ouzounov, K. D. Moll, M. A. Foster, W. R. Zipfel, W. W. Webb, and A. L. Gaeta, "Delivery of nanojoule femtosecond pulses through large-core microstructured fibers," Opt. Lett. 27, 1513-1515 (2002). [CrossRef]
  27. W. Gobel, A. Nimmerjahn, and F. Helmchen, "Distortion-free delivery of nanojoule femtosecond pulses from a Ti : sapphire laser through a hollow-core photonic crystal fiber," Opt. Lett. 29,1285-1287 (2004). [CrossRef] [PubMed]
  28. E. Tal, D. Oron, and Y. Silberberg, "Improved depth resolution in video-rate line-scanning multiphoton microscopy using temporal focusing," Opt. Lett. 30,1686-1688 (2005). [CrossRef] [PubMed]
  29. Y. C. Wu, P. Xi, J. N. Y. Qu, T. H. Cheung, and M. Y. Yu, "Depth-resolved fluorescence spectroscopy of normal and dysplastic cervical tissue," Opt. Express 13,382-388 (2005). [CrossRef] [PubMed]
  30. M. C. Skala, J. M. Squirrell, K. M. Vrotsos, V. C. Eickhoff, A. Gendron-Fitzpatrick, K. W. Eliceiri, and N. Ramanujam, "Multiphoton microscopy of endogenous fluorescence differentiates normal, precancerous, and cancerous squamous epithelial tissues," Cancer Res. 65,1180-1186 (2005). [CrossRef] [PubMed]
  31. W. R. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, and W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc.National Academy of Sciences of the United States of America 100,7075-7080 (2003). [CrossRef]
  32. L. Fu, A. Jain, H. K. Xie, C. Cranfield, and M. Gu, "Nonlinear optical endoscopy based on a double-clad photonic crystal fiber and a MEMS mirror," Opt. Express 14, 1027-1032 (2006). [CrossRef] [PubMed]
  33. A. M. Weiner, D. E. Leaird, J. S. Patel, and J. R. Wullert, "Programmable Femtosecond Pulse Shaping by Use of a Multielement Liquid-Crystal Phase Modulator," Opt. Lett. 15,326-328 (1990). [CrossRef] [PubMed]
  34. M. M. Wefers, and K. A. Nelson, "Programmable Phase and Amplitude Femtosecond Pulse Shaping," Opt. Lett. 18,2032-2034 (1993). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited