OSA's Digital Library

Optics Express

Optics Express

  • Editor: C. Martijn de Sterke
  • Vol. 15, Iss. 18 — Sep. 3, 2007
  • pp: 11095–11116

Optics InfoBase > Optics Express > Volume 15 > Issue 18 > Image reconstruction for bioluminescence tomography from partial measurement

Image reconstruction for bioluminescence tomography from partial measurement

Ming Jiang, Tie Zhou, Jiantao Cheng, Wenxiang Cong, and Ge Wang  »View Author Affiliations


Optics Express, Vol. 15, Issue 18, pp. 11095-11116 (2007)
http://dx.doi.org/10.1364/OE.15.011095


View Full Text Article

Enhanced HTML    Acrobat PDF (734 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The bioluminescence tomography is a novel molecular imaging technology for small animal studies. Known reconstruction methods require the completely measured data on the external surface, although only partially measured data is available in practice. In this work, we formulate a mathematical model for BLT from partial data and generalize our previous results on the solution uniqueness to the partial data case. Then we extend two of our reconstruction methods for BLT to this case. The first method is a variant of the well-known EM algorithm. The second one is based on the Landweber scheme. Both methods allow the incorporation of knowledgebased constraints. Two practical constraints, the source non-negativity and support constraints, are introduced to regularize the BLT problem and produce stability. The initial choice of both methods and its influence on the regularization and stability are also discussed. The proposed algorithms are evaluated and validated with intensive numerical simulation and a physical phantom experiment. Quantitative results including the location and source power accuracy are reported. Various algorithmic issues are investigated, especially how to avoid the inverse crime in numerical simulations.

© 2007 Optical Society of America

OCIS Codes
(170.0110) Medical optics and biotechnology : Imaging systems
(170.3010) Medical optics and biotechnology : Image reconstruction techniques
(170.3660) Medical optics and biotechnology : Light propagation in tissues
(170.6960) Medical optics and biotechnology : Tomography

ToC Category:
Medical Optics and Biotechnology

History
Original Manuscript: April 9, 2007
Revised Manuscript: July 17, 2007
Manuscript Accepted: August 16, 2007
Published: August 20, 2007

Virtual Issues
Vol. 2, Iss. 10 Virtual Journal for Biomedical Optics

Citation
Ming Jiang, Tie Zhou, Jiantao Cheng, Wenxiang Cong, and Ge Wang, "Image reconstruction for bioluminescence tomography from partial measurement," Opt. Express 15, 11095-11116 (2007)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-15-18-11095


Sort:  Year  |  Journal  |  Reset  

References

  1. C. Contag and M. H. Bachmann, "Advances in bioluminescence imaging of gene expression," Annu. Rev. Biomed. Eng. 4, 235 - 260 (2002). [CrossRef] [PubMed]
  2. V. Ntziachristos, J. Ripoll, L. H. V. Wang, and R. Weissleder, "Looking and listening to light: the evolution of whole-body photonic imaging," Nat. Biotech. 23, 313 - 320 (2005). [CrossRef]
  3. B. W. Rice, M. D. Cable, and M. B. Nelson, "In vivo imaging of light-emitting probes," J. Biomed. Opt. 6, 432 - 440 (2001). [CrossRef] [PubMed]
  4. G. Alexandrakis, F. R. Rannou, and A. F. Chatziioannou, "Tomographic bioluminescence imaging by use of a combined optical-PET (OPET) system: a computer simulation feasibility study," Phys. Med. Biol. 50, 4225 -4241 (2005). [CrossRef] [PubMed]
  5. Z. Paroo, R. A. Bollinger, D. A. Braasch, E. Richer, D. R. Corey, P. P. Antich, and R. P. Mason, "Validating bioluminescence imaging as a high-throughput, quantitative modality for assessing tumor burden," Molecular Imaging 3, 117-124 (2004). [CrossRef] [PubMed]
  6. A. Rehemtulla, L. D. Stegman, S. J. Cardozo, S. Gupta, D. E. Hall, C. H. Contag, and B. D. Ross, "Rapid and quantitative assessment of cancer treatment response using in vivo bioluminescence imaging," Neoplasia 2, 491 - 495 (2002). [CrossRef]
  7. A. McCaffrey, M. A. Kay, and C. H. Contag, "Advancing molecular therapies through in vivo bioluminescent imaging," Molecuar Imaging 2, 75 - 86 (2003). [CrossRef]
  8. A. Soling and N. G. Rainov, "Bioluminescence imaging in vivo - application to cancer research," Expert Opinion on Biological Therapy 3, 1163 - 1172 (2003). [PubMed]
  9. J. C. Wu, I. Y. Chen, G. Sundaresan, J. J. Min, A. De, J. H. Qiao, M. C. Fishbein, and S. S. Gambhir, "Molecular imaging of cardiac cell transplantation in living animals using optical bioluminescence and positron emission tomography," Circulation 108, 1302 - 1305 (2003). [CrossRef] [PubMed]
  10. C. H. Contag and B. D. Ross, "It’s not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology," J. Magn. Reson. 16, 378 - 387 (2002). [CrossRef]
  11. G. Wang, E. A. Hoffman, and G. McLennan, "Bioluminescent CT method and apparatus," (2003). US provisional patent application.
  12. G. Wang et al, "Development of the first bioluminescent tomography system," Radiology Suppl. (Proceedings of the RSNA) 229(P) (2003).
  13. G. Wang, Y. Li, and M. Jiang, "Uniqueness theorems for bioluminescent tomography," Med. Phys. 31, 2289 -2299 (2004). [CrossRef] [PubMed]
  14. M. Jiang and G. Wang, "Image reconstruction for bioluminescence tomography," in "Proceedings of SPIE: Developments in X-Ray Tomography IV,", vol. 5535 (2004), vol. 5535, pp. 335 - 351. Invited talk.
  15. M. Jiang and G. Wang, "Image reconstruction for bioluminescence tomography," in "Proceedings of the RSNA," (2004).
  16. H. Li, J. Tian, F. Zhu, W. Cong, L. V. Wang, E. A. Hoffman, and G. Wang, "A mouse optical simulation environment (MOSE) to investigate bioluminescent phenomena in the living mouse with the Monte Carlo method," Academic Radiology 11, 1029 - 1038 (2004). [CrossRef] [PubMed]
  17. X. J. Gu, Q. H. Zhang, L. Larcom, and H. B. Jiang, "Three-dimensional bioluminescence tomography with model-based reconstruction," Opt. Express 12, 3996-4000 (2004). [CrossRef] [PubMed]
  18. M. Jiang, T. Zhou, J. T. Cheng, W. Cong, K. Durairaj, and G. Wang, "Image reconstruction for bioluminescence tomography," in "Proceedings of the RSNA," (2005).
  19. W. Cong, G. Wang, D. Kumar, Y. Liu, M. Jiang, L. V. Wang, E. A. Hoffman, G. McLennan, P. B. McCray, J. Zabner, and A. Cong, "Practical reconstruction method for bioluminescence tomography," Opt. Express 13, 6756-6771 (2005). [CrossRef] [PubMed]
  20. A. Cong and G. Wang, "A finite-element-based reconstruction method for 3D fluorescence tomography," Opt. Express 13, 9847-9857 (2005). [CrossRef] [PubMed]
  21. C. Kuo, O. Coquoz, T. Troy, N. Zhang, D. Zwarg, and B. Rice, "Bioluminescent tomography for in vivo localization and quantification of luminescent sources from a multiple-view imaging system," in "SMI Fourth Conference," (Cologne, Germany, 2005).
  22. A. J. Chaudhari, F. Darvas, J. R. Bading, R. A. Moats, P. S. Conti, D. J. Smith, S. R. Cherry, and R. M. Leahy, "Hyperspectral and multispectral bioluminescence optical tomography for small animal imaging," Phys. Med. Biol. 50, 5421 - 5441 (2005). [CrossRef] [PubMed]
  23. N. V. Slavine, M. A. Lewis, E. Richer, and P. P. Antich, "Iterative reconstruction method for light emitting sources based on the diffusion equation," Med. Phys. 33, 61 - 68 (2006). [CrossRef] [PubMed]
  24. H. Dehghani, S. Davis, S. D. Jiang, B. Pogue, K. Paulsen, and M. Patterson, "Spectrally resolved bioluminescence optical tomography," Optics Letters 31, 365 - 367 (2005). [CrossRef]
  25. S. R. Arridge, "Optical tomography in medical imaging," Inverse Problems 15, R41 - R93 (1999). [CrossRef]
  26. F. Natterer and F. Wübbeling, Mathematical Methods in Image Reconstruction (SIAM, Philadelphia, PA, 2001). [CrossRef]
  27. A. P. Gibson, J. C. Hebden, and S. R. Arridge, "Recent advances in diffuse optical imaging," Phys. Med. Biol. 50, R1-R43 (2005). [CrossRef] [PubMed]
  28. A. Cong and G. Wang, "Multispectral bioluminescence tomography: Methodology and simulation," International Journal of Biomedical Imaging 2006 (2006). Article ID 57614. doi:10.1155/IJBI/2006/57614.
  29. C. Q. Li and H. B. Jiang, "Imaging of particle size and concentration in heterogeneous turbid media with multispectral diffuse optical tomography," Opt. Express 12, 6313-6318 (2004). [CrossRef] [PubMed]
  30. A. Kak and M. Slaney, Principles of Computerized Tomographic Imaging (IEEE Press, New York, 1987).
  31. F. Natterer, The Mathematics of Computerized Tomography (SIAM, Philadelphia, PA, 2001). [CrossRef]
  32. A. P. Dempster, N.M. Laird, and D. B. Rubin, "Maximal likelihood form incomplete data via the EM algorithm," Journal of the Royal Statistical Society. Series B. 39, 1 - 38 (1977).
  33. L. A. Shepp and Y. Vardi, "Maximum likelihood restoration for emission tomography," IEEE Transactions on Medical Imaging 1, 113 - 122 (1982). [CrossRef] [PubMed]
  34. D. L. Snyder, T. J. Schulz, and J. A. O’Sullivan, "Deblurring subject to nonnegativity constraints," IEEE Transactions on Signal Processing 40, 1143 - 1150 (1992). [CrossRef]
  35. M. Jiang and G. Wang, "Convergence studies on iterative algorithms for image reconstruction," IEEE Transactions on Medical Imaging 22, 569 - 579 (2003). [CrossRef] [PubMed]
  36. M. Jiang and G. Wang, "Development of iterative algorithms for image reconstruction," J. X-Ray Sci. Technol. 10, 77 - 86 (2002). Invited Review.
  37. M. Piana and M. Bertero, "Projected Landweber method and preconditioning," Inverse Problems 13, 441 - 463 (1997). [CrossRef]
  38. A. Sabharwal and L. C. Potter, "Convexly constrained linear inverse problems: iterative leat-squares and regularization," IEEE Transactions on Signal Processing 46, 2345 - 2352 (1998). [CrossRef]
  39. A. Ishimaru, Wave Propagation and Scattering in Random Media (IEEE Press, New York, 1997).
  40. A. D. Klose and A. H. Hielscher, "Quasi-Newton methods in optical tomographic image reconstruction," Inverse Problems 19, 387-409 (2003). [CrossRef]
  41. D. S. Anikonov, A. E. Kovtanyuk, and I. V. Prokhorov, Transport equation and tomography, Inverse and Ill-posed Problems Series (VSP, Utrecht, 2002).
  42. D. Gilbarg and N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, vol. 224 of Grundlehren der mathematischen Wissenschaften (Springer-Verlag, Berlin-Heideberg-New York, 1983).
  43. R. Dautray and J. L. Lions, Mathematical Analysis and Numerical Methods for Science and Technology, vol. I (Springer-Verlag, Berlin, 1990).
  44. V. Isakov, Inverse Problems for Partial Differential Equations, vol. 127 of Applied Mathematical Series (Springer, New York-Berlin-Heideberg, 1998).
  45. W. Rudin, Functional analysis, International Series in Pure and Applied Mathematics (McGraw-Hill, New York, 1991), 2nd ed.
  46. M. H. Protter and H. F. Weinberger, Maximum Principles in Differential Equations (Prentice-Hall, Englewood Cliffs, N. J., 1967).
  47. B. Eicke, "Konvex-resringierte schlechtgestellte Problems und ihr Regularisierung durch Iterationsverfahren," Thesis, Technischen Universit¨at Berlin (1991).
  48. B. Eicke, "Iteration methods for convexly constrained ill-posed problems in Hilbert space," Numerical Functional Analysis and Optimization 13, 413 - 429 (1992). [CrossRef]
  49. S. C. Brenner and L. R. Scott, The mathematical theory of finite element methods, Texts in applied mathematics; 15 (Springer-Verlag, New York, NY, 2002), 2nd ed.
  50. D. L. Colton and R. Kress, Inverse acoustic and elctromagnetic scattering theory (Springer, Berlin; New York, 1998), 2nd ed.
  51. A. D. Klose, "Transport-theory-based stochastic image reconstruction of bioluminescent sources," J. Opt. Soc. Am., A 24, 1601-1608 (2007). [CrossRef]
  52. E. A. Marengo, A. J. Devaney, and R. W. Ziolkowski, "Inverse source problem and mimnimum-energy sources," J. Opt. Soc. Am., A 17, 34 - 45 (2000). [CrossRef]
  53. A. N. Tikhonov and V. Y. Arsenin, Solutions of Ill-posed Problems (W. H. Winston, Washington, D. C., 1977).
  54. M. Bertero and P. Boccacci, Inverse Problems in Imaging (Institute of Physical Publishing, Bristol and Philadelphia, 1998). [CrossRef]
  55. R. J. Santos, "Equivalence of regularization and truncated iteration for general ill-posed problems," Linear Algebra and Its applications 236, 25-33 (1996). [CrossRef]
  56. R. B. Schulz, J. Ripoll, and V. Ntziachristos, "Experimental fluorescence tomography of tissues with noncontact measurements," IEEE Transactions on Medical Imaging 23, 492-500 (2004). [CrossRef] [PubMed]
  57. M. D. Buhmann, Radial basis functions: theory and implementations, vol. 12 of Cambridge Monographs on Applied and Computational Mathematics (Cambridge University Press, Cambridge, 2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited