OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 12, Iss. 15 — Jul. 26, 2004
  • pp: 3471–3480

Optics InfoBase > Optics Express > Volume 12 > Issue 15 > Enhanced bandwidth of supercontinuum generated in microstructured fibers

Enhanced bandwidth of supercontinuum generated in microstructured fibers

G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola  »View Author Affiliations

Optics Express, Vol. 12, Issue 15, pp. 3471-3480 (2004)

View Full Text Article

Enhanced HTML    Acrobat PDF (819 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Enhancement of the bandwidth of supercontinuum generated in microstructured fibers with a tailored dispersion profile is demonstrated experimentally. The fibers are designed to have two zero-dispersion wavelengths separated by more than 700 nm, which results in an amplification of two dispersive waves at visible and infrared wavelengths. The underlying physics behind the broad continuum formation is discussed and analyzed in detail. The experimental observations are confirmed through numerical simulations.

© 2004 Optical Society of America

OCIS Codes
(190.5530) Nonlinear optics : Pulse propagation and temporal solitons
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Research Papers

Original Manuscript: June 14, 2004
Revised Manuscript: July 12, 2004
Published: July 26, 2004

G. Genty, M. Lehtonen, H. Ludvigsen, and M. Kaivola, "Enhanced bandwidth of supercontinuum generated in microstructured fibers," Opt. Express 12, 3471-3480 (2004)

Sort:  Journal  |  Reset  


  1. J. K. Ranka, R. S. Windeler, and A. J. Stentz, �??Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm,�?? Opt. Lett. 25, 25-27 (2000). [CrossRef]
  2. See for example Nonlinear optics of photonic crystals, Special issue of J. Opt. Soc. Am. B 19, 1961-2296 (2002) or Supercontinuum generation, Special issue of Appl. Phys. B 77, 143-376 (2003).
  3. A. V. Husakou and J. Herrmann, �??Supercontinuum generation in photonic crystal fibers made from highly nonlinear glasses, �?? Appl. Phys. B. 77, 227-234 (2003). [CrossRef]
  4. K. M. Hilligsøe, T. V. Andersen, H. N. Paulsen, C. K. Nielsen, K. Mølmer, S. Keiding, R. Kristiansen, K. P. Hansen, and J. J. Larsen, �??Supercontinuum generation in a photonic crystal fiber with two zero dispersion wavelengths, �?? Opt. Express 12, 1045-1054 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-6-1045</a>. [CrossRef] [PubMed]
  5. R. Holzwarth, T. Udem, T. W. Hansch, J. C. Knight, W. J. Wadsworth, and P. S. J. Russell, �??Optical frequency synthesizer for precision spectroscopy,�?? Phys. Rev. Lett. 85, 2264-2267 (2000). [CrossRef] [PubMed]
  6. A. V. Husakou and J. Herrmann, �??Supercontinuum generation, four-wave mixing, and fission of higher-order solitons in photonic-crystal fibers,�?? J. Opt. Soc. Am. B 19, 2171-2182 (2002). [CrossRef]
  7. G. Genty, M. Lehtonen, H. Ludvigsen, J. Broeng, and M. Kaivola, �??Spectral broadening of femtosecond pulses into continuum radiation in microstructured fibers,�?? Opt. Express 10, 1083-1098 (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-20-1083</a>. [CrossRef] [PubMed]
  8. J. M. Dudley, L. Provino, N. Grossard, H. Maillotte, R. S. Windeler, B. J. Eggleton, and S. Coen, �??Supercontinuum generation in air-silica microstructured fibers with nanosecond and femtosecond pulse pumping,�?? J. Opt. Soc. Am. B. 19, 765-771 (2002). [CrossRef]
  9. J. R. Folkenberg, N. A. Mortensen, K. P. Hansen, T. P. Hansen, H. R. Simonsen, and C. Jakobsen, �??Experimental investigation of cutoff phenomena in nonlinear photonic crystal fibers,�?? Opt. Lett. 28, 1882-1884 (2003). [CrossRef] [PubMed]
  10. N. Akhemediev and M. Karlsson, �??Cherenkov radiation emitted by solitons in optical fibers,�?? Phys. Rev. A 51, 2602-2607 (1995). [CrossRef]
  11. K. J. Blow and D. Wood, �??Theoretical description of transient stimulated Raman scattering in optical fibers,�?? IEEE J. Quantum Electron. 25, 2665-2673 (1989). [CrossRef]
  12. D. V. Skryabin, F. Luan, J. C. Knight, and P. St. J. Russell, �??Soliton self-frequency shift cancellation in photonic crystal fibers,�?? Science 301, 1705-1708 (2003). [CrossRef] [PubMed]
  13. M. Lehtonen, G. Genty, M. Kaivola, and H. Ludvigsen, �??Supercontinuum generation in a highly birefringent microstructured fiber,�?? Appl. Phys. Lett. 82, 2197-2199 (2003). [CrossRef]
  14. M. L. Hu, C. Y. Wang, L. Chai, and A. M. Zheltikov, �??Frequency-tunable anti-Stokes line emission by eigenmodes of a birefringent microstructure fiber,�?? Opt. Express 12, 1932-1937 (2004), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-12-9-1932</a> [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (2830 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited