OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 1 — Jan. 9, 2006
  • pp: 222–228

Optics InfoBase > Optics Express > Volume 14 > Issue 1 > Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror

Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror

Amanda J. Wright, Brett A. Patterson, Simon P. Poland, John M. Girkin, Graham M. Gibson, and Miles J. Padgett  »View Author Affiliations


Optics Express, Vol. 14, Issue 1, pp. 222-228 (2006)
http://dx.doi.org/10.1364/OPEX.14.000222


View Full Text Article

Enhanced HTML    Acrobat PDF (183 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A dynamic closed-loop method for focus tracking using a spatial light modulator and a deformable membrane mirror within a confocal microscope is described. We report that it is possible to track defocus over a distance of up to 80 μm with an RMS precision of 57 nm. For demonstration purposes we concentrate on defocus, although in principle the method applies to any wavefront shape or aberration that can be successfully reproduced by the deformable membrane mirror and spatial light modulator, for example, spherical aberration.

© 2006 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(180.0180) Microscopy : Microscopy
(230.4040) Optical devices : Mirrors
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Microscopy

Virtual Issues
Vol. 1, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Amanda J. Wright, Brett A. Patterson, Simon P. Poland, John M. Girkin, Graham M. Gibson, and Miles J. Padgett, "Dynamic closed-loop system for focus tracking using a spatial light modulator and a deformable membrane mirror," Opt. Express 14, 222-228 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-1-222


Sort:  Journal  |  Reset  

References

  1. J. M. Girkin, "Topical Review: Optical physics enables advances in multiphoton imaging," J. Phys. D: App. Phys. 36, R250-R258 (2003). [CrossRef]
  2. S. Hell, G. Reiner, C. Cremer, and E. H. K. Stelzer, "Aberrations in confocal fluorescence microscopy induced by mismatches in refractive index," J. Microsc. 169, 391-405 (1993). [CrossRef]
  3. M. Schwertner, M. J. Booth, and T. Wilson, "Characterizing specimen induced aberrations for high NA adaptive optical microscopy," Opt. Express 12, 6540-6550 (2004). [CrossRef] [PubMed]
  4. G. Vdovin, and P. M. Sarro, "Flexible mirror micromachined in silicon," App. Opt. 34, 2968-2972 (1995). [CrossRef]
  5. <a href= "http://www.holoeye.com/slm_technology.html">http://www.holoeye.com/slm_technology.html</a>
  6. <a href= "http://sales.hamamatsu.com/en/products/electron-tube-division/detectors/spatial-light-modulator.php">http://sales.hamamatsu.com/en/products/electron-tube-division/detectors/spatial-light-modulator.php</a>
  7. R. K Tyson, Principles of adaptive optics. (Academic Press 1998), Chaps 3, 4.
  8. P. N. Marsh, D. Burns, and J. M. Girkin, "Practical implementation of adaptive optics in multiphoton microscopy," Opt. Express 11, 1123-1130 (2003). [CrossRef] [PubMed]
  9. M. J. Booth, M. A. A. Neil, R. Juškaitis, and T. Wilson, "Adaptive aberration correction in a confocal microscope," PNAS 99, 5788-5792 (2002). [CrossRef] [PubMed]
  10. L. Sherman, J. Y. Ye, O. Albert, and T. B. Norris, "Adaptive correction of depth-induced aberrations in multiphoton scanning microscopy using a deformable mirror," J. Microsc. 206, 65-71 (2002). [CrossRef] [PubMed]
  11. A. J. Wright, D. Burns, B. A. Patterson, S. P. Poland, G. J. Valentine, and J. M. Girkin, "Exploration of the Optimisation Algorithms used in the implementation of Adaptive Optics in Confocal and Multiphoton Microscopy," Microsc. Res. and Tech. 67, 36-44 (2005). [CrossRef]
  12. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computer-generated holograms," Opt. Commun. 185, 77-82 (2000). [CrossRef]
  13. J. Leach and M. J. Padgett, "Observation of chromatic effects near a white-light vortex," New J. Phys. 5, 154.1-154.7 (2003). [CrossRef]
  14. M. T. Gruneisen, R. C. Dymale, J. R. Rotgé, L. F. DeSandre, and D. L. Lubin, "Wavelength-dependant characteristics of a telescope system with diffractive wavefront compensation," Opt. Eng. 44, 068002 (2005) [CrossRef]
  15. E. Dalimier, C. Dainty, "Comparative analysis of deformable mirrors for ocular adaptive optics," Opt. Express 13, 4275-4285 (2005). <a href= "http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-2005">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-13-11-2005</a>. [CrossRef] [PubMed]
  16. V. N. Mahajan, "Zernike Circle Polynomials and Optical Aberrations of Systems with circular pupils," Eng. & Lab. Notes, in Opt. & Phot. News 5, S-12-S-24 (1994).
  17. R. Juškaitis, and T. Wilson, "Imaging in reciprocal fibre-optic based confocal scanning microscopes," Opt. Comm. 92, 315-325 (1992) [CrossRef]
  18. M. A. A. Neil, M. J. Booth, and T. Wilson, "New model wave-front sensor: a theoretical analysis," J. Opt. Soc. Am. A 16, 1098-1107 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited