OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 14, Iss. 2 — Jan. 23, 2006
  • pp: 759–766

Optics InfoBase > Optics Express > Volume 14 > Issue 2 > Use of coherent control for selective two-photon fluorescence microscopy in live organisms

Use of coherent control for selective two-photon fluorescence microscopy in live organisms

Jennifer P. Ogilvie, Delphine Débarre, Xavier Solinas, Jean-Louis Martin, Emmanuel Beaurepaire, and Manuel Joffre  »View Author Affiliations


Optics Express, Vol. 14, Issue 2, pp. 759-766 (2006)
http://dx.doi.org/10.1364/OPEX.14.000759


View Full Text Article

Enhanced HTML    Acrobat PDF (342 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We demonstrate selective fluorescence excitation of specific molecular species in live organisms by using coherent control of two-photon excitation. We have acquired quasi-simultaneous images in live fluorescently-labeled Drosophila embryos by rapid switching between appropriate pulse shapes. Linear combinations of these images demonstrate that a high degree of fluorophore selectivity is attainable through phase-shaping. Broadband phase-shaped excitation opens up new possibilities for single-laser, multiplex, in-vivo fluorescence microscopy.

© 2006 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(190.4180) Nonlinear optics : Multiphoton processes
(320.5540) Ultrafast optics : Pulse shaping

ToC Category:
Microscopy

Virtual Issues
Vol. 1, Iss. 2 Virtual Journal for Biomedical Optics

Citation
Jennifer P. Ogilvie, Delphine Débarre, Xavier Solinas, Jean-Louis Martin, Emmanuel Beaurepaire, and Manuel Joffre, "Use of coherent control for selective two-photon fluorescence microscopy in live organisms," Opt. Express 14, 759-766 (2006)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-14-2-759


Sort:  Journal  |  Reset  

References

  1. K. A. Walowicz, I. Pastirk, V. V. Lozovoy, M. Dantus, "Multiphoton intrapulse interference. 1. Control of multiphoton processes in condensed phases," J. Phys. Chem. A 106, 9369-9373 (2002). [CrossRef]
  2. V. V. Lozovoy, I. Pastirk, K. A. Walowicz, M. Dantus, "Multiphoton intrapulse interference. Ii. Control of two- and three-photon laser induced fluorescence with shaped pulses," J. Chem. Phys. 118, 3187-3196 (2003). [CrossRef]
  3. J. Chen, H. Kawano, Y. Nabekawa, H. Mizuno, A. Miyawaki, T. Tanabe, F. Kannari, K. Midorikawa, "Selective excitation between two-photon and three-photon fluorescence with engineered cost functions," Opt. Express 12, 3408-3414 (2004). [CrossRef] [PubMed]
  4. J. P. Ogilvie, K. Kubarych, A. Alexandrou, M. Joffre, "Fourier transform measurement of two-photon excitation spectra: Applications to microscopy and optimal control," Opt. Lett. 30, 911-913 (2005). [CrossRef] [PubMed]
  5. A. Assion, T. Baumert, M. Bergt, T. Brixner, B. Kiefer, V. Seyfried, M. Strehle, G. Gerber, "Control of chemical reactions by feedback-optimized phase-shaped femtosecond laser pulses," Science 282, 919-922 (1998). [CrossRef] [PubMed]
  6. N. Dudovich, D. Oron, Y. Silberberg, "Single-pulse coherently controlled nonlinear Raman spectroscopy and microscopy," Nature 418, 512-514 (2002). [CrossRef] [PubMed]
  7. I. Pastirk, J. M. Dela Cruz, K. A. Walowicz, V. V. Lozovoy, M. Dantus, "Selective two-photon microscopy with shaped femtosecond pulses," Opt. Express 11, 1695-1701 (2003). [CrossRef] [PubMed]
  8. J. M. Dela Cruz, I. Pastirk, V. V. Lozovoy, K. A. Walowicz, M. Dantus, "Multiphoton intrapulse interference 3: Probing microscopic chemical environments," J. Phys. Chem. A 108, 53-58 (2004). [CrossRef]
  9. J. M. Dela Cruz, I. Pastirk, M. Comstock, V. V. Lozovoy, M. Dantus, "Use of coherent control methods through scattering biological tissue to achieve functional imaging," Proc. Natl. Acad. Sci. 101, 16996-17001 (2004). [CrossRef] [PubMed]
  10. D. Meshulach, Y. Silberberg, "Coherent quantum control of two-photon transitions by a femtosecond laser pulse," Nature 396, 239-242 (1998). [CrossRef]
  11. R. S. Judson, H. Rabitz, "Teaching lasers to control molecules," Phys. Rev. Lett. 68, 1500-1503 (1992). [CrossRef] [PubMed]
  12. M. Comstock, V. V. Lozovoy, I. Pastirk, M. Dantus, "Multiphoton intrapulse interference 6; binary phase shaping," Opt. Express 12, 1061-1066 (2004). [CrossRef] [PubMed]
  13. M. A. Dugan, J. X. Tull, W. S. Warren, "High-resolution acousto-optic shaping of unamplified and amplified femtosecond laser pulses," J. Opt. Soc. Am. B 14, 2348-2358 (1997). [CrossRef]
  14. E. Frumker, D. Oron, D. Mandelik, Y. Silberberg, "Femtosecond pulse-shape modulation at kilohertz rates," Opt. Lett. 29, 890-892 (2004). [CrossRef] [PubMed]
  15. E. Frumker, E. Tal, Y. Silberberg, S. Majer, "Femtosecond pulse-shape modulation at nanosecond rates", Opt. Lett. 30, 2796-2798 (2005). [CrossRef] [PubMed]
  16. F. Verluise, V. Laude, Z. Cheng, C. Spielmann, P. Tournois, "Amplitude and phase control of ultrashort pulses by use of an acousto-optic programmable dispersive filter: Pulse compression and shaping," Opt. Lett. 25, 575-577 (2000). [CrossRef]
  17. D. P. Kiehart, C. G. Galbraith, K. A. Edwards, W. L. Rickoll, R. A. Montague, "Multiple forces contribute to cell sheet morphogenesis for dorsal closure in drosophila," J. Cell Biol. 149, 471-490 (2000). [CrossRef] [PubMed]
  18. E. Wieschaus, C. Nusslein-Volhard, "Drosophila: A practical approach", Oxford, Oxford University Press (1998).
  19. I. Davis, "Visualizing fluorescence in drosophila - optical detection in thick specimens". In Protein localization by fluorescence microscopy: A practical approach, Edited by Oxford University Press, 133-162 (2000).
  20. W. Zipfel, R. M. Williams, R. Christie, A. Y. Nikitin, B. T. Hyman, W. W. Webb, "Live tissue intrinsic emission microscopy using multiphoton-excited native fluorescence and second harmonic generation," Proc. Natl. Acad. Sci. 100, 7075-7080 (2003). [CrossRef] [PubMed]
  21. C. Xu, W. Zipfel, J. B. Shear, R. M. Williams, W. W. Webb, "Multiphoton fluorescence excitation: New spectral windows for biological nonlinear microscopy," Proc. Natl. Acad. Sci. 93, 10763-10768 (1996). [CrossRef] [PubMed]
  22. E. Spiess, F. Bestvater, A. Heckel-Pompey, K. Toth, M. Hacker, G. Stobrawa, T. Feurer, C. Wotzlaw, U. Berchner-Pfannschmidt, T. Porwol, et al., "Two-photon excitation and emission spectra of the green fluorescent protein variants eCFP, eGFP and eYFP," J. of Microscopy 217, 200-204 (2005). [CrossRef]
  23. P. Tournois: "Acousto-optic programmable dispersive filter for adaptive compensation of group delay time dispersion in laser systems," Opt. Comm. 140, 245-249 (1997). [CrossRef]
  24. R. L. Fork, O. E. Martinez, J. P. Gordon, "Negative dispersion using pairs of prisms," Opt. Lett. 9, 150 (1984). [CrossRef] [PubMed]
  25. A. C. Millard, D. N. Fittinghoff, J. A. Squier, M. Muller, A. L. Gaeta, "Using GaAsP photodiodes to characterize ultrashort pulses under high numerical aperture focusing in microscopy," J. of Microscopy 193, 179-181 (1999). [CrossRef]
  26. W. Supatto, D. Débarre, B. Moulia, E. Brouzés, J.-L. Martin, E. Farge, E. Beaurepaire, "In vivo modulation of morphogenetic movements in drosophila embryos with femtosecond laser pulses," Proc. Natl. Acad. Sci. 102, 1047-1052 (2005). [CrossRef] [PubMed]
  27. W. R. Zipfel, Williams, R. M., W. W. Webb, "Nonlinear magic: Multiphoton microscopy in the biosciences," Nat. Biotech. 21, 1369-1377 (2003). [CrossRef]
  28. J. K. Ranka, R. S. Windeler, A. J. Stentz, "Visible continuum generation in air-silica microstructure optical fibers with anomalous dispersion at 800 nm," Opt. Lett. 25, 25-27 (2000). [CrossRef]
  29. S. Huang, A. A. Heikal, W. W. Webb, "Two-photon fluorescence spectroscopy and microscopy of NAD(P)H and flavoprotein," Biophys. J. 82, 2811-2825 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited