OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 13, Iss. 16 — Aug. 8, 2005
  • pp: 5961–5975

General recipe for designing photonic crystal cavities

Dirk Englund, Ilya Fushman, and Jelena Vuckovic  »View Author Affiliations

Optics Express, Vol. 13, Issue 16, pp. 5961-5975 (2005)

View Full Text Article

Enhanced HTML    Acrobat PDF (1083 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We describe a general recipe for designing high-quality factor (Q) photonic crystal cavities with small mode volumes. We first derive a simple expression for out-of-plane losses in terms of the k-space distribution of the cavity mode. Using this, we select a field that will result in a high Q. We then derive an analytical relation between the cavity field and the dielectric constant along a high symmetry direction, and use it to confine our desired mode. By employing this inverse problem approach, we are able to design photonic crystal cavities with Q > 4 ∙ 106 and mode volumes V ~ (λ/n)3. Our approach completely eliminates parameter space searches in photonic crystal cavity design, and allows rapid optimization of a large range of photonic crystal cavities. Finally, we study the limit of the out-of-plane cavity Q and mode volume ratio.

© 2005 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(130.3120) Integrated optics : Integrated optics devices
(140.3410) Lasers and laser optics : Laser resonators
(140.5960) Lasers and laser optics : Semiconductor lasers
(230.5750) Optical devices : Resonators
(230.6080) Optical devices : Sources
(250.5300) Optoelectronics : Photonic integrated circuits
(260.5740) Physical optics : Resonance

ToC Category:
Research Papers

Original Manuscript: June 20, 2005
Revised Manuscript: July 20, 2005
Published: August 8, 2005

Dirk Englund, Ilya Fushman, and Jelena Vu?kovi?, "General recipe for designing photonic crystal cavities," Opt. Express 13, 5961-5975 (2005)

Sort:  Journal  |  Reset  


  1. S. Johnson, S. Fan, A. Mekis, and J. Joannopoulos, �Multipole-cancellation mechanism for high-Q cavities in the absence of a complete photonic band gap,� Appl. Phys. Lett. 78, 3388�3390 (2001). [CrossRef]
  2. J. Vu?kovi?, M. Lon?ar, H. Mabuchi, and A. Scherer, �Design of photonic crystal microcavities for cavity QED,� Phys. Rev. E 65, 016,608 (2002).
  3. J. Vu?kovi? , M. Lon?ar, H. Mabuchi, and A. Scherer, �Optimization of Q factor in microcavities based on freestanding membranes,� IEEE J. Quantum Electron. 38, 850�856 (2002). [CrossRef]
  4. Y. Akahane, T. Asano, and S. Noda, �High-Q photonic nanocavity in a two-dimensional photonic crystal,� Nature 425, 944�947 (2003). [CrossRef] [PubMed]
  5. K. Srinivasan and O. Painter, �Momentum space design of high-Q photonic crystal optical cavities,� 10, 670�684 (2002). [PubMed]
  6. H. Y. Ryu, S. H. Kim, H. G. Park, J. K. Hwang, Y. H. Lee, and J. S. Kim, �Square-lattice photonic band-gap single-cell laser operating in the lowest-order whispering gallery mode,� Appl. Phys. Lett. 80, 3883�3885 (2002). [CrossRef]
  7. P. Lalanne, S. Mias, and J. P. Hugonin, �Two physical mechanisms for boosting the quality factor to cavity volume ratio of photonic crystal microcavities,� Opt. Express 12, 458�467 (2004). [CrossRef] [PubMed]
  8. H.-Y. Ryu, M. Notomi, G.-H. Kim, and Y.-H. Lee, �High quality-factor whispering-gallery mode in the photonic crystal hexagonal disk cavity,� Opt. Express 12, 1708�1719 (2004). [CrossRef] [PubMed]
  9. Y. Akahane, T. Asano, B.-S. Song, and S. Noda, �Fine-tuned high-Q photonic-crystal nanocavity,� 13, 1202�1214 (2005). [CrossRef] [PubMed]
  10. J. M. Geremia, J. Williams, and H. Mabuchi, �An inverse-problem approach to designing photonic crystals for cavity QED,� Phys. Rev. E 66, 066606 (2002). [CrossRef]
  11. B. Song, S. Noda, T. Asano, and Y. Akahane, �Ultra-high-Q photonic double heterostructure nanocavity,� Nature Mater. 4, 207 (2005). [CrossRef]
  12. A. Yariv and P. Yeh, Optical Waves in Crystals (Wiley and Sons, 2003).
  13. A. Badolato, K. Hennessy, M. Atature, J. Dreiser, E. Hu, P. Petroff, and A. Imamoglu, �Deterministic coupling of single quantum dots to single nanocavity modes,� Science 308(5725), 1158�61 (2005). [CrossRef] [PubMed]
  14. D. Englund, D. Fattal, E.Waks, G. Solomon, B. Zhang, T. Nakaoka, Y. Arakawa, Y. Yamamoto, and J. Vu?kovi? , �Controlling the spontaneous emission rate of single quantum dots in a two-dimensional photonic crystal,� Phys. Rev. Lett. 95, 013904(2005), arxiv/quant-ph/0501091 (2005). [CrossRef] [PubMed]
  15. R. Haberman, Elementary Applied Partial Differential Equations (Prentice-Hall, 1987).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited