OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 9, Iss. 9 — Oct. 22, 2001
  • pp: 444–453

Large-image-format computed tomography imaging spectrometer for fluorescence microscopy

Bridget K. Ford, Michael R. Descour, and Ronald M. Lynch  »View Author Affiliations

Optics Express, Vol. 9, Issue 9, pp. 444-453 (2001)

View Full Text Article

Enhanced HTML    Acrobat PDF (1552 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Multispectral imaging has significantly enhanced the analysis of fixed specimens in pathology and cytogenetics. However, application of this technology to in vivo studies has been limited. This is due in part to the increased temporal resolution required to analyze changes in cellular function. Here we present a non-scanning instrument that simultaneously acquires full spectral information (460 nm to 740 nm) from every pixel within its 2-D field of view (200 µm×200 µm) during a single integration time (typically, 2 seconds). The current spatial and spectral sampling intervals of the spectrometer are 0.985 µm and 5 nm, respectively. These properties allow for the analysis of physiological responses within living biological specimens.

© Optical Society of America

OCIS Codes
(120.6200) Instrumentation, measurement, and metrology : Spectrometers and spectroscopic instrumentation
(180.2520) Microscopy : Fluorescence microscopy
(300.6190) Spectroscopy : Spectrometers

ToC Category:
Research Papers

Original Manuscript: September 5, 2001
Published: October 22, 2001

Bridget Ford, Michael Descour, and Ronald Lynch, "Large-image-format computed tomography imaging spectrometer for fluorescence microscopy," Opt. Express 9, 444-453 (2001)

Sort:  Journal  |  Reset  


  1. W. T. Mason, ed. Fluorescent and Luminescent Probes for Biological Activity: A Practical Guide for Quantitative Real-Time Analysis, (Academic Press, 1999).
  2. R. Haugland, Handbook of fluorescent probes and research chemicals. Eighth Edition, (Molecular Probes, Inc., 2001).
  3. R. M. Lynch, K. D. Nullmeyer, B. K. Ford, L. S. Tompkins, V. L. Sutherland and M. R. Descour, "Multiparametric analysis of cellular and subcellular function by spectral imaging," in Molecular Imaging: Reporters, Dyes, Markers and Instrumentation, D. J. Burnhop and K. Licha, eds., Proc. SPIE 3924, 79-87 (2000).
  4. K. N. Richmond, S. Burnite and R. M. Lynch, "Oxygen sensitivity of mitochondrial metabolic state in isolated skeletal and cardiac myocytes," Am. J. Physiol. 273 (Cell 42), C1613- C1622 (1997).
  5. R. Martinez-Zaguilan, M. Gurule and R. M. Lynch, "Simultaneous easurement of pH and Ca2+ in single insulin secreting cells by microscopic spectral imaging," Am. J. Physiol. 270 (Cell 40), C1438-1446 (1996).
  6. R. Martinez-Zaguilan, L. S. Tompkins, R. J. Gillies and R. M. Lynch, "Simultaneous measurements of calcium and pH in cell populations," in Calcium Signaling Protocols, Meth. Molec. Biol. Series, Vol. 114, D.G. Lambert, ed. (Humana Press, 1999), Chap. 20.
  7. E. Schr�ck, S. du Manoir, T. Veldman, B. Schoell, J. Wienberg, M. A. Ferguson-Smith, Y. Ning, D. H. Ledbetter, I. Am-Bar, D. Soenksen, Y. Garini, T. Ried, "Multicolor spectral karyotyping of human chromosomes," Science 273, 494-497 (1996). [CrossRef] [PubMed]
  8. E. S. Wachman, W. Niu and D. L. Farkas, "AOTF microscope for imaging with increased speed and versatility," Biopys J. 73, 1215-1222 (1997). [CrossRef]
  9. H. R. Morris, Hoyt C. C., Treado P. J, "Imaging spectrometers for fluorescence and Raman microscopy- acoustooptic and liquid-crystal tunable filters," Appl. Spectrosc. 48:857-866
  10. N. M. Haralampus-Grynaviski, M. J. Stimson, and J. D. Simon, "Design and Applications of Rapid-Scan Spectrally Resolved Fluorescence Microscopy," Appl. Spectrosc. 54, 1727-1733 (2000). [CrossRef]
  11. M.E. Dickinson, "Spectral imaging with multiphoton excitation microscopy," in Imaging Life: From cells to whole animals. Microscopy and Microanalysis Pre-Meeting Congress, Long Beach California (2001).
  12. C. E. Volin, B. K. Ford, M. R. Descour, J. P. Garcia, P. D. Maker, G. H. Bearman, "High- speed spectral imager for imaging transient fluorescence phenomena," Appl. Opt. 37, 8112 -8119 (1998). [CrossRef]
  13. B. K. Ford, S. M. Murphy, C. E. Volin, R. M. Lynch, and M. R. Descour, "Computed-Tomography based video-rate spectral imaging system for fluorescence microscopy," Biophys. J. 80, 986-993 (2001). [CrossRef] [PubMed]
  14. S. A. Clark, B. L. Burnham, andW. L. Chick, "Modulation of glucose-induced insulin secretion from a rat clonal �-cell line," Endocrinology, 127(6), 2779-2788 (1990). [CrossRef]
  15. B. K. Ford, C. E. Volin, A. R. Rouse, R. M. Lynch, A. F. Gmitro, G. H. Bearman and M. R. Descour, "Video-rate spectral imaging system for fluorescence microscopy," in Systems and Technologies for Clinical Diagnostics and Drug Discovery II, G. E. Cohn, ed., Proc. SPIE 3603, 3603-3629 (1999).
  16. Olympus America, Inc. Melville NY, 11747, http://www.olympus.com.
  17. DALSA Tucson. Tucson, AZ 85713, http://www.dalsa.com.
  18. Jet Propulsion Laboratory. Pasadena, CA 91109.
  19. Volin, C. E, Portable snapshot infrared imaging spectrometer, Ph.D. Dissertation, University of Arizona. (2001).
  20. M. R. Descour, C. E. Volin, T. M. Gleeson, E. L. Dereniak, M. F. Hopkins, D. W. Wilson and P. D. Maker, "Demonstration of a Computed-Tomography Imaging Spectrometer using a computer-generated hologram disperser," Appl. Opt. 36, 3694-98 (1997). [CrossRef] [PubMed]
  21. M. R. Descour and E. Dereniak, "Computed-tomography imaging spectrometer: Experimental calibration and reconstruction results," Appl. Opt. 34, 4817-4826 (1995). [CrossRef] [PubMed]
  22. M. R. Descour, C. E. Volin, E. L. Dereniak, K. J. Thome, A. B. Schumacher, D. W. Wilson and P. D. Maker, "Demonstration of a High Speed Non-scanning Imaging Spectrometer," Opt. Lett. 22, 1271-1273 (1997). [CrossRef] [PubMed]
  23. J. D. Gaskill, Linear Systems, Fourier Transforms, and Optics (JohnWiley and Sons, Inc, 1978) Chap. 5.
  24. A. Lent, "A convergent algorithm for maximum entropy image restoration," in Image Analysis and Evaluation, Rodney Shaw, ed. SPSE Proceedings, 249-257 (1976).
  25. Ocean Optics, Inc. Dunedin, FL 34698, http://www.oceanoptics.com/homepage.asp.
  26. R. M. Lynch, K. E. Fogarty and F. S. Fay, "Analysis of hexokinase association with mitochondria by quantitative confocal microscopy," J. Cell Biol. 112, 385-395 (1991). [CrossRef] [PubMed]
  27. M. P Bruchez Jr., M. Moronne, P. Gin, S. Weiss, A. P. Alivosatos, "Semiconductor nanocrystals as fluorescent biological labels, Science 281, 2013-2016 (1998). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (820 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited