OSA's Digital Library

Optics Express

Optics Express

  • Editor: J. H. Eberly
  • Vol. 1, Iss. 10 — Nov. 10, 1997
  • pp: 262–271

Maxwell’s Demon at work: Two types of Bose condensate fluctuations in power-law traps

Siegfried Grossmann and Martin Holthaus  »View Author Affiliations

Optics Express, Vol. 1, Issue 10, pp. 262-271 (1997)

View Full Text Article

Enhanced HTML    Acrobat PDF (514 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



After discussing the key idea underlying the Maxwell’s Demon ensemble, we employ this idea for calculating fluctuations of ideal Bose gas condensates in traps with power-law single-particle energy spectra. Two essentially different cases have to be distinguished. If the heat capacity remains continuous at the condensation point in the large-N-limit, the fluctuations of the number of condensate particles vanish linearly with temperature, independent of the trap characteristics. If the heat capacity becomes discontinuous, the fluctuations vanish algebraically with temperature, with an exponent determined by the trap. Our results are based on an integral representation that yields the solution to both the canonical and the microcanonical fluctuation problem in a singularly transparent manner.

© Optical Society of America

OCIS Codes
(000.6590) General : Statistical mechanics
(020.7010) Atomic and molecular physics : Laser trapping

ToC Category:
Focus Issue: Fluctuations and oscillations of Bose-Einstein

Original Manuscript: September 10, 1997
Published: November 10, 1997

Siegfried Grossmann and Martin Holthaus, "Maxwell's Demon at work: Two types of Bose condensate fluctuations in power-law traps," Opt. Express 1, 262-271 (1997)

Sort:  Journal  |  Reset  


  1. L.D. Landau and E.M. Lifshitz, Statistical Physics (Pergamon, London, 1959).
  2. R.K. Pathria, Statistical Mechanics (Pergamon, Oxford, 1985).
  3. I. Fujiwara, D. ter Haar, and H. Wergeland, "Fluctuations in the population of the ground state of Bose systems", J. Stat. Phys. 2, 329-346 (1970). [CrossRef]
  4. R.M. Zi, G.E. Uhlenbeck, and M. Kac, "The ideal Bose-Einstein gas, revisited", Phys. Rep. 32, 169-248 (1977). [CrossRef]
  5. M.H. Anderson, J.R. Ensher, M.R. Matthews, C.E. Wieman, and E.A. Cornell, "Observation of Bose-Einstein condensation in a dilute atomic vapor", Science 269, 198-201 (1995). [CrossRef]
  6. K.B. Davis, M.-O. Mewes, M.R. Andrews, N.J. van Druten, D.S. Durfee, D.M. Kurn, and W. Ketterle, "Bose-Einstein condensation in a gas of sodium atoms", Phys. Rev. Lett. 75, 3969-3973 (1995). [CrossRef] [PubMed]
  7. C.C. Bradley, C.A. Sackett, and R.G. Hulet, "Bose-Einstein condensation of lithium: observation of limited condensate number", Phys. Rev. Lett. 78, 985-989 (1997). [CrossRef] [PubMed]
  8. W. Ketterle and N.J. van Druten, "Bose-Einstein condensation of a finite number of particles trapped in one or three dimensions", Phys. Rev. A 54, 656-660 (1996). [CrossRef]
  9. N.J. van Druten and W. Ketterle, "Two-step condensation of the ideal Bose gas in highly anisotropic traps", Phys. Rev. Lett. 79, 549-552 (1997). [CrossRef] [PubMed]
  10. S. Grossmann and M. Holthaus, "Microcanonical uctuations of a Bose system's ground state occupation number", Phys. Rev. E 54, 3495-3498 (1996). [CrossRef]
  11. S. Grossmann and M. Holthaus, "From number theory to statistical mechanics: Bose-Einstein condensation in isolated traps" (Preprint, Marburg, 1997). [CrossRef]
  12. M. Wilkens, "From Chinese wok to Mexican hat: Bose-Einstein condensation in an isolated Bose gas" (Preprint, Konstanz, 1996).
  13. P. Navez, D. Bitouk, M. Gajda, Z. Idziaszek, and K. Rzazewski, "The fourth statistical ensemble
  14. S. Grossmann and M. Holthaus, "Fluctuations of the particle number in a trapped Bose condensate" (Preprint, Marburg, 1997). [CrossRef]
  15. P. Borrmann and G. Franke, "Recursion formulas for quantum statistical partition functions", J. Chem. Phys. 98, 2484-2485 (1993). [CrossRef]
  16. B. Eckhardt, "Eigenvalue statistics in quantum ideal gases" (Preprint, Oldenburg, 1997). [CrossRef]
  17. M. Wilkens and C. Weiss, "Universality classes and particle number uctuations of trapped ideal Bose gases" (Preprint, Potsdam, 1997).
  18. S.R. de Groot, G.J. Hooyman, and C.A. ten Seldam, "On the Bose-Einstein condensation", Proc. Roy. Soc. London A 203, 266-286 (1950).
  19. M. Gajda and K. Rzazewski, "Fluctuations of Bose-Einstein condensate", Phys. Rev. Lett. 78, 2686-2689 (1997). See Eq. (13) therein. [CrossRef]
  20. J.E. Robinson, "Note on the Bose-Einstein integral functions", Phys. Rev. 83, 678-679 (1951). See also Ref. [2], Appendix D.
  21. F.Y. Wu, G. Rollet, H.Y. Huang, J.M. Maillard, C.-K. Hu, and C.-N. Chen, "Directed compact lattice animals, restricted partitions of an integer, and the in finite-states Potts model", Phys. Rev. Lett. 76, 173-176 (1996). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited