OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 1 — Jan. 14, 2002
  • pp: 24–34

Reformulation of the Fourier modal method with adaptive spatial resolution: application to multilevel profiles

T. Vallius and M. Honkanen  »View Author Affiliations


Optics Express, Vol. 10, Issue 1, pp. 24-34 (2002)
http://dx.doi.org/10.1364/OE.10.000024


View Full Text Article

Enhanced HTML    Acrobat PDF (543 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Formulation of the Fourier modal method for multilevel structures with spatially adaptive resolution is presented for TE and TM polarizations using a slightly reformulated representation for the spatial coordinates. Projections to Fourier base in boundary value problem are used allowing extensions to multilayer profiles with differently placed transitions. We evade the eigenvalue problem in homogeneous regions demanded in the original formulation of the Fourier modal method with adaptive spatial resolution.

© Optical Society of America

OCIS Codes
(050.1950) Diffraction and gratings : Diffraction gratings
(050.1960) Diffraction and gratings : Diffraction theory

ToC Category:
Research Papers

History
Original Manuscript: December 4, 2001
Published: January 14, 2002

Citation
Tuomas Vallius and M. Honkanen, "Reformulation of the Fourier modal method with adaptive spatial resolution: application to multilevel profiles," Opt. Express 10, 24-34 (2002)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-1-24


Sort:  Journal  |  Reset  

References

  1. K. Knop, "Rigorous diffraction theory for transmission phase gratings with deep rectangular grooves," J. Opt. Soc. Am. 68, 1206-1210 (1978). [CrossRef]
  2. P. Lalanne and G. M. Morris, "Highly improved convergence of the coupled-wave method for TM polarization," J. Opt. Soc. Am. A 13, 779-784 (1996). [CrossRef]
  3. G. Granet and B. Guizal, "Efficient implementation for the coupled-wave method for metallic lamellar gratings in TM polarization," J. Opt. Soc. Am. A 13, 1019-1023 (1996). [CrossRef]
  4. L. Li, "Use of Fourier series in the analysis of discontinuous periodic structures," J. Opt. Soc. Am. A 13, 1870-1876 (1996). [CrossRef]
  5. G. Granet,"Reformulation of the lamellar grating problem through the concept of adaptive spatial resolution," J. Opt. Soc. Am. A 16, 2510-2516 (1999). [CrossRef]
  6. R. Petit, ed., Electromagnetic theory of gratings (Springer-Verlag, Berlin, 1980). [CrossRef]
  7. J. Turunen, "Diffraction theory of microrelief gratings," Chap 2 in Micro-Optics: Elements, Systems and Applications, H. P. Herzig, ed. (Taylor & Francis, Cornwall, 1997)
  8. G. Granet, J. Chandezon, J.-P. Plumey, and K. Raniriharinosy, "Reformulation of the coordinate transformation method through the concept of adaptive spatial resolution. Application to trapezoidal gratings," J. Opt. Soc. Am. A 18, 2102-2108 (2001). [CrossRef]
  9. L. Li, "Formulation and comparison of two recursive matrix algorithms for modeling layered diffraction gratings," J. Opt. Soc. Am. A 13, 1024-1035 (1996). [CrossRef]
  10. R. H. Morf, "Exponentially convergent and numerically efficient solution of Maxwell's equations for lamellar gratings," J. Opt. Soc. Am. A 12, 1043-1056 (1995). [CrossRef]
  11. D. Nyyssonen and C. P. Kirk, "Optical microscope imaging of lines patterned in thick layers with variable edge geometry," J. Opt. Soc. Am. A 5, 1270-1280 (1988). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited