OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 14 — Jul. 15, 2002
  • pp: 597–602

Fully dynamic multiple-beam optical tweezers

René Lynge Eriksen, Vincent Ricardo Daria, and Jesper Glückstad  »View Author Affiliations

Optics Express, Vol. 10, Issue 14, pp. 597-602 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (753 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate a technique for obtaining fully dynamic multiple-beam optical tweezers using the generalized phase contrast (GPC) method and a phase-only spatial light modulator (SLM). The GPC method facilitates the direct transformation of an input phase pattern to an array of high-intensity beams, which can function as efficient multiple optical traps. This straightforward process enables an adjustable number of traps and real-time control of the position, size, shape and intensity of each individual tweezer-beam in arbitrary arrays by encoding the appropriate phase pattern on the SLM. Experimental results show trapping and dynamic manipulation of multiple micro-spheres in a liquid solution.

© 2002 Optical Society of America

OCIS Codes
(070.2580) Fourier optics and signal processing : Paraxial wave optics
(070.6110) Fourier optics and signal processing : Spatial filtering
(120.5060) Instrumentation, measurement, and metrology : Phase modulation
(140.7010) Lasers and laser optics : Laser trapping
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(230.6120) Optical devices : Spatial light modulators

ToC Category:
Research Papers

Original Manuscript: February 15, 2002
Revised Manuscript: July 12, 2002
Published: July 15, 2002

Rene Eriksen, Vincent Daria, and Jesper Gluckstad, "Fully dynamic multiple-beam optical tweezers," Opt. Express 10, 597-602 (2002)

Sort:  Journal  |  Reset  


  1. A. Ashkin, J. M. Dziedic, J. E. Bjorkholm and S. Chu, "Observation of a single-beam gradient force optical trap for dielectric particles," Opt. Lett. 11, 288 (1986). [CrossRef] [PubMed]
  2. K. Svoboda and Block S. M, "Biological applications of optical forces," Annu. Rev. Biophys. Biomol. Struct. 23, 247 (1994). [CrossRef] [PubMed]
  3. R. E. Holmlin, M. Schiavoni, C. Y. Chen, S. P. Smith, M. G. Prentiss, and G. M. Whitesides, "Light-driven microfabrication: Assembly of multi-component, three-dimensional structures by using optical tweezers," Angew. Chem. Int. Ed. Engl. 39, 3503 (2000). [CrossRef] [PubMed]
  4. R. L. Eriksen, P.C. Mogensen, and J. Glückstad, "Multiple beam optical tweezers generated by the generalized phase contrast method," Opt. Lett. 27, 267 (2002). [CrossRef]
  5. E. Fällman and O. Axner, "Design for fully steerable dual-trap optical tweezers," Appl. Opt. 36, 2107 (1997). [CrossRef] [PubMed]
  6. Y. Ogura, K. Kagawa, and J. Tanida, "Optical Manipulation of Microscopic Objects by means of Vertical-Cavity Surface-Emitting Laser Array Sources," Appl. Opt. 40, 5430 (2001). [CrossRef]
  7. M. P. MacDonald, L. Paterson, K. Volke-Sepulveda, J. Arlt, W. Sibbett, and K. Dholakia, "Creation and manipulation of three-dimensional optically trapped structures," Science 296, 1101 (2002). [CrossRef] [PubMed]
  8. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, and H. Masuhara, "Pattern formation and flow control of fine particles by laser-scanning micromanipulation," Opt. Lett. 16, 1463 (1991). [CrossRef] [PubMed]
  9. E. R. Dufresne and D. G. Grier, "Optical tweezer arrays and optical substrates created with diffractive optics," Rev. Sci. Instrum. 69, 1974 (1998). [CrossRef]
  10. E. R. Dufresne, G. C. Spalding, M. T. Dearing, S. A. Sheets, and D. G. Grier, "Computer-generated holographic optical tweezer arrays," Rev. Sci. Instrum. 72, 1810 (2001). [CrossRef]
  11. J. Liesener, M. Reicherter, T. Haist, and H. J. Tiziani, "Multi-functional optical tweezers using computergenerated holograms," Opt. Commun. 185, 77 (2000). [CrossRef]
  12. J. Glückstad, "Phase contrast imaging," U.S. patent 6,011,874 (January 4 2000).
  13. J. Glückstad and P. C. Mogensen, "Optimal phase contrast in common-path interferometry," Appl. Opt. 40, 268 (2001). [CrossRef]
  14. Y. Kobayashi, et al, "Compact High-efficiency Electrically-addressable Phase-only Spatial Light Modulator," Proc. of SPIE 3951, 158 (2000). [CrossRef]
  15. M. Friese, T. Nieminen, N. Heckenberg and H. Rubinsztein-Dunlop, "Optical alignment and spinning of laser-trapped microscopic particles," Nature 394, 348 (1998). [CrossRef]
  16. E. Higurashi, R. Sawada and T. Ito, "Optically induced angular alignment of trapped birefringent microobjects by linear polarization," Appl. Phys. Lett. 73, 3034 (1998) [CrossRef]
  17. S. Grover, A. Skirtach, R. Gauther and C. Grover, "Automated single-cell sorting system based on optical trapping," J. Biomed. Opt. 6, 14 (2001). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MPG (2306 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited