OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 16 — Aug. 12, 2002
  • pp: 740–751

Waves, rays, and the method of stationary phase

Jakob J. Stamnes  »View Author Affiliations


Optics Express, Vol. 10, Issue 16, pp. 740-751 (2002)
http://dx.doi.org/10.1364/OE.10.000740


View Full Text Article

Enhanced HTML    Acrobat PDF (457 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

If one employs a diffraction-integral approach to wave propagation and diffraction, the connection between waves and conventional geometrical and diffracted rays is provided by the Method of Stationary Phase (MSP). However, conventional ray methods break down in focal regions because of the coalescense of stationary points. Then one may use the MSP to express the focused field in terms of aperture-plane Point-Spread-Function (PSF) rays. A tutorial review of these two ray techniques is given, and a number of applications are discussed with emphasis on the physical interpretation. Examples include focusing in free space or through a plane interface, plane-wave diffraction by a circular aperture, and diffraction of a Gaussian beam by a circular aperture followed by transmission into a biaxial crystal.

© 2002 Optical Society of America

OCIS Codes
(050.1940) Diffraction and gratings : Diffraction
(080.0080) Geometric optics : Geometric optics
(080.1510) Geometric optics : Propagation methods
(080.2720) Geometric optics : Mathematical methods (general)
(260.1440) Physical optics : Birefringence
(260.1960) Physical optics : Diffraction theory

ToC Category:
Focus Issue: Rays in wave theory

History
Original Manuscript: June 18, 2002
Revised Manuscript: August 1, 2002
Published: August 12, 2002

Citation
Jakob Stamnes, "Waves, rays, and the method of stationary phase," Opt. Express 10, 740-751 (2002)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-16-740


Sort:  Journal  |  Reset  

References

  1. A. Rubinowicz, �??Zur Kirchho.schen Beugungstheorie,�?? Ann. Phys. Lpz. 73, 339-364 (1924 ). [CrossRef]
  2. J.B. Keller, �??The geometrical theory of diffraction,�?? Proc. Symp. on Microwave Optics, McGill University Press, Montreal, 1953.
  3. J.B. Keller, �??Diffraction by an aperture,�?? J. Appl. Phys. 28, 426-444 (1957). [CrossRef]
  4. J.B. Keller, �??Geometrical theory of diffraction,�?? J. Opt. Soc. Am. 52, 116-130 (1962). [CrossRef] [PubMed]
  5. J.J. Stamnes, Waves in Focal Regions (Adam Hilger, Bristol and Boston, 1986).
  6. H. Weyl, �??Ausbreitung elektromagnetischer Wellen uber einem ebenen Leiter,�?? Ann. Phys. Lpz. 60, 481-500 (1919). [CrossRef]
  7. H. Ling and S.W. Lee, �??Focusing of electromagnetic waves through a dielectric interface,�?? J. Opt. Soc. Am. A 1, 559-567 (1984). [CrossRef]
  8. J.J. Stamnes and D. Jiang, �??Focusing of two-dimensional electromagnetic waves through a plane interface,�?? Pure Appl. Opt. 7, 603-625 (1998). [CrossRef]
  9. D. Jiang and J.J. Stamnes, �??Theoretical and experimental results for two-dimensional electromagnetic waves focused through an interface,�?? Pure Appl. Opt. 7, 627-641 (1998). [CrossRef]
  10. V. Dhayalan and J.J. Stamnes, �??Focusing of electromagnetic waves into a dielectric slab. I. Exact and asymptotic results,�?? Pure Appl. Opt. 7, 33-52 (1998). [CrossRef]
  11. J.J. Stamnes and D. Jiang, �??Focusing of electromagnetic waves into a uniaxial crystal,�?? Opt. Commun. 150, 251-262 (1998). [CrossRef]
  12. D. Jiang and J.J. Stamnes, �??Numerical and asymptotic results for focusing of two-dimensional waves in uniaxial crystals,�?? Opt. Commun. 163, 55-71 (1999). [CrossRef]
  13. V. Dhayalan and J.J. Stamnes, �??Comparison of exact and asymptotic results for the focusing of electromagnetic waves through a plane interface,�?? Appl. Opt. 39, 6332-6340 (2001). [CrossRef]
  14. J.J. Stamnes and G. Sithambaranathan, �??Reflection and refraction of an arbitrary electromagnetic wave at a plane interface separating an isotropic and a biaxial medium,�?? J. Opt. Soc. Am. A 18, 3119-3129 (2001). [CrossRef]
  15. G. Sithambaranathan and J.J. Stamnes, �??Transmission of a Gaussian beam into a biaxial crystal,�?? J. Opt. Soc. Am. A 18, 1662-1669 (2001). [CrossRef]
  16. J.J. Stamnes and V. Dhayalan, �??Transmission of a two-dimensional Gaussian beam into a uniaxial crystal,�?? J. Opt. Soc. Am. A 18, 1670-1677 (2001). [CrossRef]
  17. G. Sithambaranathan and J.J. Stamnes, �??Analytical approach to the transmission of a Gaussian beam into a biaxial crystal,�?? accepted by Opt. Commun. (2002).
  18. P. Wolfe, �??A new approach to edge diffraction,�?? SIAM J. Appl. Math. 15, 1434-1469 (1967). [CrossRef]
  19. N. Sergienko, J.J. Stamnes, V. Kettunen, M. Kuittinen, J. Turunen, P. Vahimaa, and A. Friberg, �??Asymptotic methods for evaluation of di.ractive lenses,�?? J. Opt. A: Pure Appl. Opt. 1, 552-559 (1999). [CrossRef]
  20. J.J. Stamnes and N. Sergienko, �??Asymptotic analysis of imaging in the presence of a sinusoidal phase modulation,�?? J. Opt. A: Pure Appl. Opt. 2, 365-371 (2000). [CrossRef]
  21. M.V. Berry and C. Upstill, �??Catastrophe optics: morphologies of caustics and their diffraction patterns,�?? Progress in Optics, vol. XVIII, E. Wolf (ed.) (North-Holland, Amsterdam, 1980). [CrossRef]
  22. J.J. Stamnes, �??Diffraction, asymptotics, and catastrophes,�?? Opt. Acta 29, 823-842 (1982). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited