OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 16 — Aug. 12, 2002
  • pp: 752–776

Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities

H. E. Tureci, H. G. L. Schwefel, A. Douglas Stone, and E. E. Narimanov  »View Author Affiliations

Optics Express, Vol. 10, Issue 16, pp. 752-776 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (2942 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The quasi-bound modes localized on stable periodic ray orbits of dielectric micro-cavities are constructed in the short-wavelength limit using the parabolic equation method. These modes are shown to coexist with irregularly spaced “chaotic” modes for the generic case. The wavevector quantization rule for the quasi-bound modes is derived and given a simple physical interpretation in terms of Fresnel reflection; quasi-bound modes are explictly constructed and compared to numerical results. The effect of discrete symmetries of the resonator is analyzed and shown to give rise to quasi-degenerate multiplets; the average splitting of these multiplets is calculated by methods from quantum chaos theory.

© 2002 Optical Society of America

OCIS Codes
(080.2720) Geometric optics : Mathematical methods (general)
(140.3410) Lasers and laser optics : Laser resonators
(140.4780) Lasers and laser optics : Optical resonators

ToC Category:
Focus Issue: Rays in wave theory

Original Manuscript: June 26, 2002
Revised Manuscript: July 10, 2002
Published: August 12, 2002

Hakan Tureci, H. Schwefel, A. Stone, and E. Narimanov, "Gaussian-optical approach to stable periodic orbit resonances of partially chaotic dielectric micro-cavities," Opt. Express 10, 752-776 (2002)

Sort:  Journal  |  Reset  


  1. R. K. Chang, A. K. Campillo, eds., Optical Processes in Microcavities (World Scienti.c, Singapore, 1996).
  2. H. Yokoyama, �??Physics and device applications of optical microcavities,�?? Science 256, 66�??70 (1992). [CrossRef] [PubMed]
  3. A. D. Stone, �??Wave-chaotic optical resonators and lasers,�?? Phys. Scr. T90, 248�??262 (2001). [CrossRef]
  4. C. Gmachl, F. Capasso, E. E. Narimanov, J. U. Nockel, A. D. Stone, J. Faist, D. L. Sivco, and A. Y. Cho, �??High-power directional emission from microlasers with chaotic resonators,�?? Science 280, 1556�??1564 (1998). [CrossRef] [PubMed]
  5. J. U. Nockel and A. D. Stone, �??Ray and wave chaos in asymmetric resonant optical cavities,�?? Nature 385, 45�??47 (1997). [CrossRef]
  6. A. J. Campillo, J. D. Eversole, and H. B. Lin, �??Cavity quantum electrodynamic enhancement of stimulated-emission in microdroplets,�?? Phys. Rev. Lett. 67, 437�??440 (1991). [CrossRef] [PubMed]
  7. H. B. Lin, J. D. Eversole, and A. J. Campillo, �??Spectral properties of lasing microdroplets,�?? J. Opt. Soc. Am. B 9, 43�??50 (1992). [CrossRef]
  8. S. M. Spillane, T. J. Kippenberg, and K. J. Vahala, �??Ultralow-threshold Raman laser using a spherical dielectric microcavity,�?? Nature 415, 621�??623 (2002). [CrossRef] [PubMed]
  9. B. E. Little, J. S. Foresi, G. Steinmeyer, E. R. Thoen, S. T. Chu, H. A. Haus, E. P. Ippen, L. C. Kimerling, and W. Greene, �??Ultra-compact Si-SiO2 microring resonator optical channel dropping filters,�?? IEEE Photonics Technol. Lett. 10, 549�??551 (1998). [CrossRef]
  10. S. X. Qian, J. B. Snow, H. M. Tzeng, and R. K. Chang, �??Lasing droplets - highlighting the liquid-air interface by laser-emission,�?? Science 231, 486�??488 (1986). [CrossRef] [PubMed]
  11. A. W. Poon, F. Courvoisier, and R. K. Chang, �??Multimode resonances in square-shaped optical microcavities,�?? Opt. Lett. 26, 632�??634 (2001). [CrossRef]
  12. I. Braun, G. Ihlein, F. Laeri, J. U. Nockel, G. Schulz-Eklo., F. Schuth, U. Vietze, O. Weiss, and D. Wohrle, �??Hexagonal microlasers based on organic dyes in nanoporous crystals,�?? Appl. Phys. B-Lasers Opt. 70, 335�??343 (2000). [CrossRef]
  13. A. Mekis, J. U. Nockel, G. Chen, A. D. Stone, and R. K. Chang, �??Ray chaos and q spoiling in lasing droplets,�?? Phys. Rev. Lett. 75, 2682�??2685 (1995). [CrossRef] [PubMed]
  14. J. U. Nockel, A. D. Stone, G. Chen, H. L. Grossman, and R. K. Chang, �??Directional emission from asymmetric resonant cavities,�?? Opt. Lett. 21, 1609�??1611 (1996). [CrossRef]
  15. S. Gianordoli, L. Hvozdara, G. Strasser, W. Schrenk, J. Faist, and E. Gornik, �??Long-wavelength λ = 10μm quadrupolar-shaped GaAs-AlGaAs microlasers,�?? IEEE J. Quantum Electron. 36, 458�??464 (2000). [CrossRef]
  16. S. Chang, R. K. Chang, A. D. Stone, and J. U. Nockel, �??Observation of emission from chaotic lasing modes in deformed microspheres: displacement by the stable-orbit modes,�?? J. Opt. Soc.Am. B 17, 1828�??1834 (2000). [CrossRef]
  17. N. B. Rex, H. E. Tureci, H. G. L. Schwefel, R. K. Chang, and A. D. Stone, �??Fresnel filtering in lasing emission from scarred modes of wave-chaotic optical resonators,�?? Phys. Rev. Lett. 88, art. no.094 102 (2002). [CrossRef]
  18. N. B. Rex, Regular and chaotic orbit Gallium Nitride microcavity lasers, Ph.D. thesis, Yale University (2001).
  19. C. Gmachl, E. E. Narimanov, F. Capasso, J. N. Baillargeon, and A. Y. Cho, �??Kolmogorov-Arnold-Moser transition and laser action on scar modes in semiconductor diode lasers with deformed resonators,�?? Opt. Lett. 27, 824�??826 (2002). [CrossRef]
  20. S. B. Lee, J. H. Lee, J. S. Chang, H. J. Moon, S. W. Kim, and K. An, �??Observation of scarred modes in asymmetrically deformed microcylinder lasers,�?? Phys. Rev. Lett. 88, art. no.033903 (2002). [CrossRef] [PubMed]
  21. E. J. Heller, �??Bound-state eigenfunctions of classically chaotic hamiltonian-systems - Scars of periodic orbits,�?? Phys. Rev. Lett. 53, 1515�??1518 (1984). [CrossRef]
  22. H. G. L. Schwefel, N. B. Rex, H. E. Tureci, R. K. Chang, and A. D. Stone, �??Dramatic shape sensitivity of emission patterns for similarly deformed cylindrical polymer lasers,�?? in QELS Technical Digest (Optical Society of America, Washington, D.C., 2002), pp. 24�??25.
  23. M. V. Berry, �??Regularity and chaos in classical mechanics, illustrated by three deformations of a circular billiard,�?? Eur. J. Phys. 2, 91�??102 (1981). [CrossRef]
  24. B. Li and M. Robnik, �??Geometry of high-lying eigenfunctions in a plane billiard system having mixed type classical dynamics,�?? J. Phys. A 28, 2799�??2818 (1995). [CrossRef]
  25. J. B. Keller and S. I. Rubinow, �??Asymptotic Solution of Eigenvalue Problems,�?? Ann. Phys. 9, 24�??75 (1960). [CrossRef]
  26. M. C. Gutzwiller, Chaos in classical and quantum mechanics (Springer, New York, USA, 1990).
  27. W. H. Miller, �??Semiclassical quantization of nonseparable systems: A new look at periodic orbit theory,�?? J. Chem. Phys. 63, 996�??999 (1975). [CrossRef]
  28. S. D. Frischat and E. Doron, �??Quantum phase-space structures in classically mixed systems: A scattering approach,�?? J. Phys. A-Math. Gen. 30, 3613�??3634 (1997). [CrossRef]
  29. O. A. Starykh, P. R. J. Jacquod, E. E. Narimanov, and A. D. Stone, �??Signature of dynamical localization in the resonance width distribution of wave-chaotic dielectric cavities,�?? Phys. Rev. E 62, 2078�??2084 (2000). [CrossRef]
  30. J. U. Nockel, �??Angular momentum localization in oval billiards,�?? Phys. Scr. T90, 263�??267 (2001). [CrossRef]
  31. V. M. Babi¡c and V. S. Buldyrev, Asymptotic Methods in Shortwave Di.raction Problems (Springer, New York, USA, 1991).
  32. F. Laeri and J. U. N¨ockel, �??Nanoporous compound materials for optical applications �?? Microlasers and microresonators,�?? in Handbook of Advanced Electronic and Photonic Materials, H. S. Nalwa, ed. (Academic Press, San Diego, 2001). [CrossRef]
  33. A. E. Siegman, Lasers (University Science Books, Mill Valley, California, 1986).
  34. V. P. Maslov and M. V. Fedoriuk, Semiclassical Approximations in Quantum Mechanics (Reidel, Boston, USA, 1981). [CrossRef]
  35. N. A. Chernikov, �??System whose hamiltonian is a time-dependent quadratic form in x and p,�?? Sov. Phys.-Jetp Engl. Trans. 26, 603�??608 (1968).
  36. E. S. C. Ching, P. T. Leung, A. Maassen van den Brink, W. M. Suen, T. S. S., and K. Young, �??Quasinormal-mode expansion for waves in open systems,�?? Rev. Mod. Phys. 70, 1545�??1554 (1998). [CrossRef]
  37. J. W. Ra, H. L. Bertoni, and L. B. Felsen, �??Reflection and transmission of beams at a dielectric interface,�?? SIAM J. Appl. Math 24, 396�??413 (1973). [CrossRef]
  38. J. M. Robbins, �??Discrete symmetries in periodic-orbit theory,�?? Phys. Rev. A 40, 2128�??2136 (1989). [CrossRef] [PubMed]
  39. M. J. Davis and E. J. Heller, �??Multidimensional wave functions from classical trajectories,�?? J. Chem. Phys. 75, 246 (1981). [CrossRef]
  40. O. Bohigas, S. Tomsovic, and D. Ullmo, �??Manifestations of classical phase space structures in quantum mechanics,�?? Phys. Rep. 223, 45 (1993). [CrossRef]
  41. S. D. Frischat and E. Doron, �??Semiclassical description of tunneling in mixed systems: case of the annular billiard,�?? Phys. Rev. Lett. 75, 3661 (1995). [CrossRef] [PubMed]
  42. F. Leyvraz and D. Ullmo, �??The level splitting distribution in chaos-assisted tunneling,�?? J. Phys. A 29, 2529 (1996). [CrossRef]
  43. E. E. Narimanov, unpublished.
  44. M. V. Berry, �??Regular and irregular semiclassical wavefunctions,�?? J. Phys. A 10, 2083 (1977). [CrossRef]
  45. H. E. Tureci and A. D. Stone, �??Deviation from Snell�??s law for beams transmitted near the critical angle: application to microcavity lasers,�?? Opt. Lett. 27, 7�??9 (2002). [CrossRef]
  46. E. E. Narimanov, G. Hackenbroich, P. Jacquod, and A. D. Stone, �??Semiclassical theory of the emission properties of wave-chaotic resonant cavities,�?? Phys. Rev. Lett. 83, 4991�??4994 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited