OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 16 — Aug. 12, 2002
  • pp: 777–804

Calculations of wave propagation through statistical random media, with and without a waveguide

Stanley M. Flatté  »View Author Affiliations


Optics Express, Vol. 10, Issue 16, pp. 777-804 (2002)
http://dx.doi.org/10.1364/OE.10.000777


View Full Text Article

Enhanced HTML    Acrobat PDF (3186 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Simulations of laser-beam propagation through atmospheric turbulence and acoustic pulse propagation though ocean internal waves in the presence of a transverse waveguide are described. Both these problems are amenable to the parabolic wave equation for propagation in the forward direction. In the optical case, the question treated is the irradiance variance and spatial spectrum. In the ocean case, pulse propagation over long ranges is investigated. Determining the travel time of a pulse requires expanding the numerical simulation in a broadband, multifrequency calculation that takes even more time. Much effort has been expended in approximating the propagation by rays, so that the trajectory of the energy propagating from a given source to a given receiver can be tracked, and coherence calculations can be ray-based, using semi-classical formulas. This paper reviews the comparisons of several analytic ray-based approximations with numerical parabolic-equation simulations to determine their accuracies.

© 2002 Optical Society of America

OCIS Codes
(010.1290) Atmospheric and oceanic optics : Atmospheric optics
(030.6600) Coherence and statistical optics : Statistical optics

ToC Category:
Focus Issue: Rays in wave theory

History
Original Manuscript: June 11, 2002
Revised Manuscript: July 18, 2002
Published: August 12, 2002

Citation
Stanley Flatte, "Calculations of wave propagation through statistical random media, with and without a waveguide," Opt. Express 10, 777-804 (2002)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-16-777


Sort:  Journal  |  Reset  

References

  1. A. Consortini, F. Cochetti, J. H. Churnside, and R. J. Hill, ??Inner-scale effect on intensity variance measured for weak to strong atmospheric scintillation,?? J. Opt. Soc. Am. A 10, 2354??2362 (1993). [CrossRef]
  2. S. M. Flatte, G. Y. Wang, and J. Martin, ??Irradiance variance of optical waves through atmospheric turbulence by numerical simulation and comparison with experiment,?? J. Opt. Soc. Am. A 10, 2363??2370 (1993). [CrossRef]
  3. R. Hill and S. Cli.ord, ??Modified spectrum of atmospheric temperature fluctuations and its applications to optical propagation,?? J. Opt. Soc. Am. 68, 892??899 (1978). [CrossRef]
  4. S. Flatte and J. Gerber, ??Irradiance variance behavior for plane- and spherical-wave optical propagation through strong turbulence,?? J. Opt. Soc. Am. A 17, 1092??1097 (2000). [CrossRef]
  5. R. Dashen and G.-Y. Wang, ??Intensity fluctuation for waves behind a phase screen: a new asymptotic scheme,?? J. Opt. Soc. Am. A 10, 1219??1225 (1993). [CrossRef]
  6. R. Dashen, G.-Y. Wang, S. M. Flatte, and C. Bracher, ??Moments of intensity and log intensity: new asymptotic results for waves in power-law media,?? J. Opt. Soc. Am. A 10, 1233??1242 (1993). [CrossRef]
  7. R. Dashen, G. Wang, S. M. Flatte, and C. Bracher, ??Moments of intensity and log-intensity: New asymptotic results for waves in power-law media,?? J. Opt. Soc. Am. A 10, 1233??1242 (1993). [CrossRef]
  8. L. Andrews and R. Phillips, Laser beam propagation through random media (SPIE Publishing Services, Bellingham, WA, 1999).
  9. L. Andrews, R. Phillips, C. Hopen, and M. Al-Habash, ??Theory of optical scintillation,?? J. Opt. Soc. Am. A 16, 1417??1429 (1999). [CrossRef]
  10. S. Flatte, R. Dashen, W. Munk, K. Watson, and F. Zachariasen, Sound Transmission Through a Fluctuating Ocean (A 300 page monograph published by the Cambridge University Press in their series on Mechanics and Applied Mathematics, 1979).
  11. S. Flatte, ??Wave propagation through random media: Contributions from ocean acoustics,?? Proc. of the IEEE 71, 1267??1294 (1983). [CrossRef]
  12. T. Duda, S. M. Flatte, J. Colosi, B. Cornuelle, J. Hildebrand, W. Hodgkiss, Jr., P. Worcester, B. Howe, J. Mercer, and R. Spindel, ??Measured wavefront fluctuations in 1000-km pulse propagation in the Pacific Ocean,?? J. Acoust. Soc. Am. 92, 939??955 (1992). [CrossRef]
  13. J. Colosi, S. M. Flatte, and C. Bracher, ??Internal-wave effects on 1000-km oceanic acoustic pulse propagation: Simulation and comparison with experiment,?? J. Acoust. Soc. Am. 96, 452??468 (1994). [CrossRef]
  14. S. Reynolds, S. Flatte, R. Dashen, B. Buehler, and P. Maciejewski, ??AFAR measurements of acoustic mutual coherence functions of time and frequency,?? J. Acoust. Soc. Am. 77, 1723??31 (1985). [CrossRef]
  15. R. Dashen, S. Flatte, and S. Reynolds, ??Path-integral treatment of acoustic mutual coherence functions for rays in a sound channel,?? J. Acoust. Soc. Am. 77, 1716??22 (1985). [CrossRef]
  16. S. Flatte, S. Reynolds, R. Dashen, B. Buehler, and P. Maciejewski, ??AFAR measurements of intensity and intensity moments,?? J. Acoust. Soc. Am. 82, 973??980 (1987). [CrossRef]
  17. S. Flatte, S. Reynolds, and R. Dashen, ??Path-integral treatment of intensity behavior for rays in a sound channel,?? J. Acoust. Soc. Am. 82, 967??972 (1987). [CrossRef]
  18. S. Flatte and M. Vera, ??Comparison between ocean-acoustic fluctuations in parabolic-equation simulations and estimates from integral approximations,?? J. Acoust. Soc. Am. in review (2002).
  19. J. Simmen, S. M. Flatte, and G.-Y. Wang, ??Wavefront folding, chaos, and diffraction for sound propagation through ocean internal waves,?? J. Acoust. Soc. Am. 102, 239??255 (1997). [CrossRef]
  20. F. Jensen, W. Kuperman, M. Porter, and H. Schmidt, Computational Ocean Acoustics (American Institute of Physics Press, 1994).
  21. F. Tappert, ??The parabolic approximation method,?? In Wave Propagation and Underwater Acoustics, J. Keller and J. Papadakis, eds., pp. 224??287 (Springer-Verlag, 1977). [CrossRef]
  22. S. M. Flatte, C. Bracher, and G.-Y. Wang, ??Probability-density functions of irradiance for waves in atmospheric turbulence calculated by numerical simulation,?? J. Opt. Soc. Am. A 11, 2080??2092 (1994).
  23. K. Gochelashvili and V. Shishov, ??Saturated fluctuations in the laser radiation intensity in a turbulent medium,?? Sov. Phys. JETP 39, 605??609 (1974).
  24. R. L. Fante, ??Inner-scale size effect on the scintillations of light in the turbulent atmosphere,?? J. Opt. Soc. Am. 73, 277??281 (1983). [CrossRef]
  25. R. Frehlich, ??Intensity covariance of a point source in a random medium with a Kolmogorov spectrum and an inner scale of turbulence,?? J. Opt. Soc. Am. A 4, 360??366 (1987). [CrossRef]
  26. L. Andrews, M. Al-Habash, C. Hopen, and R. Phillips, ??Theory of optical scintillation: Gaussianbeam wave model,?? Waves Random Media 11, 271??291 (2001). [CrossRef]
  27. R. Dashen, G.Y. Wang, Stanley M. Flatte, and C. Bracher, ??Moments of intensity and logintensity: new asymptotic results from waves in power-law random media,?? J. Opt. Soc. Am. A 10, 1233??1242 (1993) [CrossRef]
  28. S. Flatte and G. Rovner, ??Calculations of internal-wave-induced fluctuations in ocean-acoustic propagation,?? J. Acoust. Soc. Am. 108, 526??534 (2000). [CrossRef] [PubMed]
  29. R. Hardin and F. Tappert, ??Applications of the Split-Step Fourier Method to the Numerical Solution of Nonlinear and Variable CoefficientWave Equations,?? Society for Industrial and Applied Mathematics Review 15, 423 (1973).
  30. S. Flatte and F. Tappert, ??Calculation of the effect of internal waves on oceanic sound transmission,?? J. Acoust. Soc. Am. 58, 1151??1159 (1975). [CrossRef]
  31. W. H. Munk, ??Sound channel in an exponentially stratified ocean, with application to SOFAR,?? J. Acoust. Soc. Am. 55, 220??226 (1974). [CrossRef]
  32. C. Garrett and W. Munk, ??Space-time scales of ocean internal waves,?? Geophys. Fluid Dyn. 2, 225??264 (1972).
  33. C. Garrett and W. Munk, ??Space-time scales of internal waves: a progress report,?? J. Geophys. Res. 80, 291??297 (1975). [CrossRef]
  34. S. Flatte and R. Esswein, ??Calculation of the phase-structure function density from oceanic internal waves,?? J. Acoust. Soc. Am. 70, 1387??96 (1981). [CrossRef]
  35. J. Colosi and M. Brown, ??Efficient numerical simulation of stochastic internal-wave-induced soundspeed perturbation fields,?? J. Acoust. Soc. Am. 103, 2232??2235 (1998). [CrossRef]
  36. S. Flatte and G. Rovner, ??Path-integral expressions for fluctuations in acoustic transmission in the ocean waveguide,?? In Methods of The oretical Physics Applied to Oceanography, P. Muller, ed., pp. 167??174 (Proceedings of the Ninth ??Aha Huliko??a Hawaiian Winter Workshop, 1997).
  37. S. Flatte and R. Stoughton, ??Predictions of internal-wave effects on ocean acoustic coherence, travel-time variance, and intensity moments for very long-range propagation,?? J. Acoust. Soc. Am. 84, 1414??1424 (1988). [CrossRef]
  38. J. Colosi, Ph.D. thesis, University of California at Santa Cruz, 1993.
  39. J. Colosi et al., ??Comparisons of measured and predicted acoustic fluctuations for a 3250-km propagation experiment in the eastern North Pacific Ocean,?? J. Acoust. Soc. Am. 105, 3202??3218 (1999). [CrossRef]
  40. J. Colosi, F. Tappert, and M. Dzieciuch, ??Further analysis of intensity fluctuations from a 3252-km acoustic propagation experiment in the eastern North Pacific,?? J. Acoust. Soc. Am. 110, 163??169 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited