OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 16 — Aug. 12, 2002
  • pp: 805–817

Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature

Andreas Behrendt and Takuji Nakamura  »View Author Affiliations

Optics Express, Vol. 10, Issue 16, pp. 805-817 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (253 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The volume depolarization ratio of the molecular backscatter signal detected with polarization lidar varies by a factor of nearly 4 depending on whether the rotational Raman bands are included in the detected signals of the individual system or not. If the rotational Raman spectrum is included partially in the signals, this calibration factor depends on the temperature of the atmosphere. This dependency is studied for different spectral widths of the receiving channels. In addition, the sensitivity to differences between the laser wavelength and the center wavelength of the receiver are discussed.

© 2002 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(010.1310) Atmospheric and oceanic optics : Atmospheric scattering
(010.3640) Atmospheric and oceanic optics : Lidar
(260.5430) Physical optics : Polarization
(290.1090) Scattering : Aerosol and cloud effects

ToC Category:
Research Papers

Original Manuscript: June 24, 2002
Revised Manuscript: July 28, 2002
Published: August 12, 2002

Andreas Behrendt and Takuji Nakamura, "Calculation of the calibration constant of polarization lidar and its dependency on atmospheric temperature," Opt. Express 10, 805-817 (2002)

Sort:  Journal  |  Reset  


  1. R. M. Scotland, K. Sassen, R. J. Stone, "Observations by lidar of linear depolarization ratios by hydrometeors," J. Appl. Meteorol. 10, 1011-1017 (1971). [CrossRef]
  2. S. R. Pal and A. I. Carswell, "Polarization properties of lidar backscattering from clouds," Appl. Opt. 12, 1530-1535 (1973). [CrossRef] [PubMed]
  3. K. Sassen, �??The polarization lidar technique for cloud research: a review and current assessment,�?? Bull. Am. Meteorol. Soc. 72, 1848�??1866 (1991). [CrossRef]
  4. C. M. R. Platt, J. C. Scott, and A. D. Dilley, "Remote sensing of high clouds. Part IV: Optical properties of midlatitude and tropical cirrus," J. Atmos. Sci. 44, 729-747 (1987). [CrossRef]
  5. K. Sassen, M. K. Griffin, and G. C. Dodd, "Optical scattering and microphysical properties of subvisual cirrus clouds and climatic implications," J. Appl. Meteorol. 28, 91-91 (1989). [CrossRef]
  6. K. Sassen and S. Benson, "A midlatitude cirrus cloud climatology from the facility for atmospheric remote sensing. Part II: Microphysical properties derived from lidar depolarization," J. Atmos. Sci. 58, 2103-2112 (2001). [CrossRef]
  7. E. V. Browell, C. F. Butler, S. Ismail, P. A. Robinette, A. F. Carter, N. S. Higdon, O. B. Toon, M. R. Schoeberl, and A. F. Tuck, "Airborne lidar observations in the wintertime arctic stratosphere: polar stratospheric clouds," Geophys. Res. Lett. 17, 385�??388 (1990). [CrossRef]
  8. L. R. Poole, G. S. Kent, M. P. McCormick, W. H. Hunt, M. T. Osborn, S. Schaffner, and M. C. Pitts, "Dualpolarization air-borne lidar observations of polar stratospheric cloud evolution," Geophys. Res. Lett. 17, 389�??392 (1990). [CrossRef]
  9. J. Reichardt, A. Tsias, and A. Behrendt, "Optical properties of PSC Ia-enhanced at UV and visible wavelengths: model and observations," Geophys. Res. Lett. 27, 201�??204 (2000). [CrossRef]
  10. S. R. Pal and A. I. Carswell, "Multiple scattering in atmospheric clouds: Lidar observations," Appl. Opt. 15, 1990-1995 (1976). [CrossRef] [PubMed]
  11. K. Sassen and R. L. Petrilla, "Lidar depolarization from multiple scattering in marine stratus clouds," Appl. Opt. 25, 1450-1459 (1986). [CrossRef] [PubMed]
  12. U. Wandinger, A. Ansmann, and C. Weitkamp, "Atmospheric Raman depolarization measurements," Appl. Opt. 33, 5671-5673 (1994). [CrossRef] [PubMed]
  13. J. Biele, G. Beyerle, G. Baumgarten, "Polarization lidar: Corrections of instrumental effects," Opt. Express 7, 427-435 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12-427">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-12-427</a>. [CrossRef] [PubMed]
  14. H. Adachi, T. Shibata, Y. Iwasaka, and M. Fujiwara, "Calibration method for the lidar-observed stratospheric depolarization ratio in the presence of liquid aerosol particles," Appl. Opt. 40, 6587-6595 (2001). [CrossRef]
  15. G. Placzek, "Rayleigh-Streuung und Raman Effekt," In: Handbuch der Radiologie, Vol. 6, Part 2, E. Marx, ed. (Akademischer Verlag, Leipzig, 1934).
  16. R. J. Butcher, D. V. Willetts, and W. J. Jones, "On the use of a Fabry-Perot etalon for the determination of rotational Raman constants of simple molecules - the pure rotational Raman spectra of oxygen and nitrogen," Proc. Roy. Soc. Lond. A. 324, 231-245 (1971); replace in formula (8), p. 238, 2 by 3 as exponent. [CrossRef]
  17. M. Penney, R.L. St. Peters, and M. Lapp, "Absolute rotational Raman cross sections for N2, O2, and CO2," J. Opt. Soc. Am. 64, 712-716 (1974). [CrossRef]
  18. A. Buldakov, I. I. Matrosov, and T. N. Popova, "Determination of the anisotropy of the polarizability tensor of the O2 and N2 molecules," Opt. Spectrosc. (USSR) 46, 488-489 (1979).
  19. I. Kondilenko, P. A. Korotkov, V. A. Klimenko, and N.G. Golubeva, "Absolute Raman scattering cross sections of the rotational lines of nitrogen and oxygen," Opt. Spectrosc. (USSR) 48, 411-412 (1980).
  20. A. T. Young, "Revised depolarization corrections for atmospheric extinction," Appl. Opt. 19, 3427-3428 (1980). [CrossRef] [PubMed]
  21. G. W. Kattawar, A. T. Young, T. J. Humphreys, " Inelastic scattering in planetary atmospheres. I The Ring effect without aerosols," Astrophysical J. 243, 1049-1057 (1981). [CrossRef]
  22. C.-Y. She, "Spectral structure of laser light revisited: Bandwidths of nonresonant scattering lidars," Appl. Opt. 40, 4875-4884 (2001). [CrossRef]
  23. A. T. Young, "Rayleigh scattering," Appl. Opt. 20, 533-535 (1981). [CrossRef] [PubMed]
  24. D. L. Renschler, J.L. Hunt, T. K. McCubbin, and S. R. Pole, "Triplet structure of the rotational Raman spectrum of oxygen," J. Mol. Spectrosc. 31, 173-176 (1969). [CrossRef]
  25. D. Nedeljkovic, A. Hauchecorne, and M. L. Chanin, "Rotational Raman lidar to measure the atmospheric temperature from the ground to 30 km," IEEE Trans. Geo. Rem. Sens. 31, 90-101 (1993). [CrossRef]
  26. F. Cairo, G. D. Donfrancesco, A. Adriani, L. Pulvirenti, F. Fierli, "Comparison of various depolarization parameters measured by lidar," Appl. Opt. 38, 4425-4432 (1999). [CrossRef]
  27. D. A. Long, Raman Spectroscopy, (McGraw-Hill, 1977).
  28. A. Behrendt and J. Reichardt, "Atmospheric temperature profiling in the presence of clouds with a pure rotational Raman lidar by use of an interference-filter-based polychromator," Appl. Opt. 39, 1372-1378 (2000). [CrossRef]
  29. J. Marling, "1.05-1.44 um tunability and performance of the cw Nd3+:YAG laser," IEEE J. Quantum Electron QE-14, 56-62 (1978). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: MOV (304 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited