OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 17 — Aug. 26, 2002
  • pp: 899–908

Theoretical study on dispersion compensation in air-core Bragg fibers

George Ouyang, Yong Xu, and Amnon Yariv  »View Author Affiliations

Optics Express, Vol. 10, Issue 17, pp. 899-908 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (522 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In a previous paper we developed a matrix theory that applies to any cylindrically symmetric fiber surrounded by Bragg cladding. Using this formalism, along with Finite Difference Time Domain (FDTD) simulations, we study the waveguide dispersion for the m = 1 mode in an air-core Bragg fiber and showed it is possible to achieve very large negative dispersion values (~ -20,000 ps/(nm.km)) with significantly reduced absorption loss and non-linear effects.

© 2002 Optical Society of America

OCIS Codes
(060.2330) Fiber optics and optical communications : Fiber optics communications
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Research Papers

Original Manuscript: June 19, 2002
Revised Manuscript: August 21, 2002
Published: August 26, 2002

George Ouyang, Yong Xu, and Amnon Yariv, "Theoretical study on dispersion compensation in air-core Bragg fibers," Opt. Express 10, 899-908 (2002)

Sort:  Journal  |  Reset  


  1. P. Yeh, A. Yariv, and E. Marom, �??Theory of Bragg fiber,�?? J. Opt. Soc. Am. 68, 1196-1201, (1978). [CrossRef]
  2. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, �??Guiding optical light in air using an all-dielectric structure,�?? J. Lightwave Technol. 17, 2039-2041, (1999). [CrossRef]
  3. M. Miyagi, A. Hongo, Y. Aizawa, and S. Kawakami, �??Fabrication of germanium-coated nickel hollow waveguides for infrared transmission,�?? Appl. Phys. Lett. 43, 430-432, (1983). [CrossRef]
  4. N. Croitoru, J. Dror, and I. Gannot, �??Characterization of hollow fibers for the transmission of infrared radiation,�?? Appl. Opt. 29, 1805-1809, (1990). [CrossRef] [PubMed]
  5. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539, (1999). [CrossRef] [PubMed]
  6. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, �??An all-dielectric coaxial waveguide,�?? Science 289, 415-419, (2000). [CrossRef] [PubMed]
  7. Y. Xu, R. K. Lee, and A. Yariv, �??Asymptotic analysis of Bragg fibers,�?? Opt. Lett. 25, 1756-1758, (2000). [CrossRef]
  8. G. Ouyang, Y. Xu, and A. Yariv, �??Comparative study of air-core and coaxial Bragg fibers: singlemode transmission and dispersion characteristics,�?? Opt. Express 9, 733-747, (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-733">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-733</a> [CrossRef] [PubMed]
  9. S. G. Johnson et al., �??Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,�?? Opt. Express 9, 748-779, (2001). <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748</a> [CrossRef] [PubMed]
  10. Y. Xu, G. Ouyang, R. Lee, and A. Yariv, �??Asymptotic matrix theory of Bragg fibers,�?? J. Lightwave Technol. 20, 428-440, (2002). [CrossRef]
  11. A. Vengsarkar and W. A. Reed, �??Dispersion-compensating single-mode fibers: efficient designs for first- and second-order compensation,�?? Opt. Lett. 18, 924-926, (1993). [CrossRef] [PubMed]
  12. A. Bjarklev, T. Rasmussen, O. Lumholt, K. Rottwitt, and M. Helmer, �??Optimal design of singlecladded dispersion-compensating optical fibers,�?? Opt. Lett. 19, 457-459, (1994). [CrossRef] [PubMed]
  13. B. Jopson and A. Gnauck, �??Dispersion compensation for optical fiber systems,�?? IEEE Commun. Mag. 33, 96-102, (1995). [CrossRef]
  14. Onishi M, Kashiwada T, Ishiguro Y, Nishimura M, and Kanamori H, �??High-performance dispersion-compensating fibers,�?? Fiber Integ. Opt. 16, 277-285, (1997). [CrossRef]
  15. C. Bradford, �??Managing chromatic dispersion increases bandwidth,�?? Laser Focus World, February (2001).
  16. M.R.C. Caputo and M.E. Gouvea, �??Dispersion slope effects of the compensation dispersion fiber for broadband dispersion compensation in the presence of self-phase modulation,�?? Laser Focus World, February (2001).
  17. P. Yeh, A. Yariv, and C. Hong, �??Electromagnetic propagation in periodic stratified media. I. General theory,�?? J. Opt. Soc. Am. 67, 423-438, (1977). [CrossRef]
  18. K. S. Yee, �??Numerical solution of initial boundary value problems involving Maxwell�??s equations in isotropic media,�?? IEEE Trans. Antennas Propag. AP-14, 302-307, (1966).
  19. J. P. Berenger, �??A perfectly matched layer for the absorption of electromagnetic waves,�?? J. Computat. Phys. 114, 185-200, (1994). [CrossRef]
  20. S. D. Gedney, �??An anisotropic perfectly matched layer-absorbing medium for the truncation of FDTD lattices,�?? IEEE Trans. Antennas Propag. 44, 1630-1639, (1996). [CrossRef]
  21. F. Zepparelli, P. Mezzanotte, F. Alimenti, L. Roselli, R. Sorrentino, G. Tartarini, and P. Bassi, �??Rigorous analysis of 3D optical and optoelectronic devices by the compact-2D-FDTD method,�?? Opt. Quantum Electron. 31, 827-841, (1999) [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited