OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 2 — Jan. 28, 2002
  • pp: 145–154

Thin laser light sheet microscope for microbial oceanography

Eran Fuchs, Jules S. Jaffe, Richard A. Long, and Farooq Azam  »View Author Affiliations


Optics Express, Vol. 10, Issue 2, pp. 145-154 (2002)
http://dx.doi.org/10.1364/OE.10.000145


View Full Text Article

Enhanced HTML    Acrobat PDF (276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Despite a growing need, oceanographers are limited by existing technological constrains and are unable to observe aquatic microbes in their natural setting. In order to provide a simple and easy to implement solution for such studies, a new Thin Light Sheet Microscope (TLSM) has been developed. The TLSM utilizes a well-defined sheet of laser light, which has a narrow (23 micron) axial dimension over a 1 mm × 1 mm field of view. This light sheet is positioned precisely within the depth of field of the microscope’s objective lens. The technique thus utilizes conventional microscope optics but replaces the illumination system. The advantages of the TLSM are two-fold: First, it concentrates light only where excitation is needed, thus maximizing the efficiency of the illumination source. Secondly, the TLSM maximizes image sharpness while at the same time minimizing the level of background noise. Particles that are not located within the objective’s depth of field are not illuminated and therefore do not contribute to an out-of-focus image. Images from a prototype system that used SYBR Green I fluorescence stain in order to localize single bacteria are reported. The bacteria were in a relatively large and undisturbed volume of 4ml, which contained natural seawater. The TLSM can be used for fresh water studies of bacteria with no modification. The microscope permits the observation of interactions at the microscale and has potential to yield insights into how microbes structure pelagic ecosystems.

© Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(180.2520) Microscopy : Fluorescence microscopy

ToC Category:
Research Papers

History
Original Manuscript: November 19, 2001
Revised Manuscript: January 25, 2002
Published: January 28, 2002

Citation
Eran Fuchs, Jules Jaffe, Richard Long, and Farooq Azam, "Thin laser light sheet microscope for microbial oceanography," Opt. Express 10, 145-154 (2002)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-2-145


Sort:  Journal  |  Reset  

References

  1. J. S. Jaffe, P. J. S. Franks and A. W. Leising. ?Simultaneous imaging of phytoplankton and zooplankton distributions,? Oceanography, 11, 24 ? 29 (1998). [CrossRef]
  2. P. J. S. Franks J. S. Jaffe, ?Microscale distributions of phytoplankton: initial results from a two dimensional imaging Flourometer,: OSST,? Marine Ecology Progress Series, 220, (2001). [CrossRef]
  3. F. Azam, D. C. Smith, G. F. Steward and ?. Hagstr?m, ?Bacteria-organic matter coupling and its significance for oceanic carbon cycling,? Microb. Ecol. 28, 167-179 (1993). [CrossRef]
  4. L. Legendre and J. LeFevre, ?Microbial food webs and the export of biogenic carbon in oceans,? Aquat. Microb. Ecol. 9, 69-77 (1995). [CrossRef]
  5. T. Fenchel, G. M. King and T. H. Blackburn, Bacterial Biogeochemsitry: The Ecophysiology of Mineral Cycling, 2nd Edition. (Academic Press, New York 1998).
  6. I. Koike, H. Shigemitsu, T. Kazuki and K. Kogure, ?Role of sub-micrometre particles in the ocean,? Nature 345, 242-244 (1990). [CrossRef]
  7. A. L. Alldredge, U. Passow and B. E. Logan, ?The abundance and significance of a class of large, transparent organic particles in the ocean,? Deep-Sea Res. I 40, 1131-1140 (1993). [CrossRef]
  8. A. L. Alldredge and M. Silver, ?Characteristics, dynamics and significance of marine snow,? Prog. Oceanogr. 20, 41-82 (1988). [CrossRef]
  9. A. Heissenberger, G. G. Leppard G. J. and Herndl, ?Ultrastructure of marine snow. II. Microbiological considerations,? Mar. Ecol. Prog. Ser. 135, 299-308 (1996). [CrossRef]
  10. A. Shibata, K. Kogure, I. Koike and K. Ohwada, ?Formation of submicron colloidal particles from maring bacteria by viral infection,? Mar. Ecolo. Prog. Ser. 303-307 (1997). [CrossRef]
  11. T. Nagata and D. Kirchman, ?Roles of submicron particles and colloids in microbial food webs and biegeochemical cycles within marine environments,? Adv. Microb. Ecol. 15, 81-103 (1997).
  12. F. Azam, ?Microbial control of oceanic carbon flux: The plot thickens,? Science 280, 694-696 (1998). [CrossRef]
  13. F. Azam and D. C. Smith, ?Bacterial influence on the variability in the ocean's biogeochemical state: A mechanistic view,? In: S. Demers (ed.) Particle analysis in oceanography. (Springer-Verlag, 213-236 1991). [CrossRef]
  14. L. M. Proctor and J. A. Fuhrman, ?Roles of viral infection in organic particle flux,? Mar. Ecol. Prog. Ser. 69, 133-142 (1991). [CrossRef]
  15. A. L. Alldredge and Y. Cohen, ?Can microscale chemical patches persist in the sea? Microelectrode study of marine snow, fecal pellets,? Science 235, 687-691 (1987). [CrossRef]
  16. D. C. Smith, M. Simon, A. L. Alldredge and F. Azam, ?Intense hydrolytic enzyme activity on marine aggregates and implications for rapid particle dissolution,? Nature 359, 139-142 (1992). [CrossRef]
  17. N. Blackburn, T. Fenchel and F. Mitchell, ?Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria,? Science 282, 2254-2256 (1998). [CrossRef] [PubMed]
  18. M. Karner and J. A. Fuhrman, ?Determination of active marine bacterioplankton: a comparison of universal 16srRNA probes, autoradiography and nucleoid staining,? Appl. Environ. Microbiol. 63, 1208-1213 (1997). [PubMed]
  19. F.Schut, R. A. Prins and J. C. Gottschal, ?Oligotrophy and pelagic marine bacteria: facts and fiction,? Aquat. Microb. Ecol. 12, 177-202 (1997). [CrossRef]
  20. G. Mitchell, L. Pearson, S. Dillon and K. Kantalis, ?Natural assemblages of marine bacteria exhibiting high-speed motility and large accelerations,? Appl. Enivron. Microbiol. 61, 4436-4440 (1995).
  21. R. T. Noble and J. A. Fuhrman, ?Use of SYBR Green 1 for rapid epifluorescence counts of marine bacteria and viruses,? Aquat. Microb. Ecol. 14, 113-118 (1998). [CrossRef]
  22. J. G. White, W. B. Amos and M. Fordham, ?An evaluation of confocal versus conventional imaging of biological structures by fluorescence light microscopy,? J. Cell Biology 105, 41-48. (1987). [CrossRef] [PubMed]
  23. G. J. Brakenhoff, H. T. M. van der Voort, E. A. van Spronsen and A. Nanninga ?Three-dimensional imaging in fluorescence by confocal scanning microscopy,? J. Microscopy, 153, 151-159, (1989). [CrossRef]
  24. T. Wilson and C. Sheppard. ?Theory and practice of scanning optical microscopy,? (Academic Press, London, 1984).
  25. Steffen Lindek and Ernst H. K. Stelzer ?Optical transfer functions for confocal theta fluorescence microscopy,? J. Opt. Soc. Am. A 13, 479-482 (1996). [CrossRef]
  26. L. Steffen, C. Cristoph and E. H. K. Stelzer ?Confocal theta fluorescence microscopy with annular apertures,? Appl. Opt. 35, 126-130 (1996). [CrossRef]
  27. H. K. Stelzer and S. Lindek ?Fundamental reduction of the observation volume in far-field light microscopy by detection orthogonal to the illumination axis: confocal theta microscopy,? Opt. Commun. 111, 536-547 (1994) [CrossRef]
  28. D. A. Agard, ?Optical Sectioning microscopy: Cellular architecture in three dimensions,? Ann. Rev. Biophys. Bioeng. 13, 191-219 (1984). [CrossRef]
  29. F. Macias-Garz, A. C. Bovik, K. R. Diller, S. J. Aggarwal and J. K. Aggarwal, ?Transactions on Acoustics, Speech and Signal Processing,? IEEE 36, 1067-1074 (1988).
  30. B. Bailey, D. L. Farkas, D. L. Taylor and F. Lanni ?Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,? Nature 366, 44-48 (1993) [CrossRef] [PubMed]
  31. F. Lanni, B. Bailey, D. L. Farkas and D. L. Taylor ?Excitation field synthesis as a means for obtaining enhanced axial resolution in fluorescence microscopes,? Bioimaging 1, 187-196 (1993). [CrossRef]
  32. J. A. Conchello, C. M. Cogswell, A. G. Tescher and T. Wilson, ?Three-Dimensional and Multidimensional Microscopy: Image Acquisition Processing VII,? Proceedings of SPIE Volume 3919 (2000).
  33. E. Gratton, ?Laser sources for confocal and two-photon microscopy,? Chapter in Confocal and Two- Photon Microscopy: Foundations, Applications and Advances. Ed., Alberto Diaspro, (Wiley & Sons, Inc. 2000).
  34. S. Inou? and K. Spring, ?Video Microscopy: The Fundamentals,? (New York: Plenum, 1997).
  35. C. D. Meinhart, S. T. Wereley and M. H. B. Gray ?Volume illumination for two-dimensional particle image velocimetry,? Meas. Sci. Technol. 11, 809-814 (2000) [CrossRef]
  36. S. A. Self, ?Focusing of spherical Gaussian beams,? Appl. Opt. 22, 658-661, (1983). [CrossRef] [PubMed]
  37. D. Hanselman and B. Littlefield, Mastering MATLAB: A Comprehensive Tutorial and Reference, (Prentice-Hall, Inc., 1996).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited