OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 20 — Oct. 7, 2002
  • pp: 1118–1132

Microdroplet identification and size measurement in sprays with lasing images

Ali Serpengüzel, Serkan Küçükşenel, and Richard K. Chang  »View Author Affiliations


Optics Express, Vol. 10, Issue 20, pp. 1118-1132 (2002)
http://dx.doi.org/10.1364/OE.10.001118


View Full Text Article

Enhanced HTML    Acrobat PDF (758 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Two-dimensional fluorescence and lasing images of a Rhodamine-6G doped water spray are observed with color photography. The lasing microdroplets are identified by their two reciprocal lasing spots. The microdroplet sizes are measured using the digitized images. The measured mean microdroplet diameter is 69.7 μm with a standard deviation of 23.1 μm. The measured microdroplet size distribution compares favorably with the normal Gaussian size distribution.

© 2002 Optical Society of America

OCIS Codes
(010.1100) Atmospheric and oceanic optics : Aerosol detection
(230.5750) Optical devices : Resonators
(250.5230) Optoelectronics : Photoluminescence
(300.2530) Spectroscopy : Fluorescence, laser-induced

ToC Category:
Research Papers

History
Original Manuscript: September 3, 2002
Revised Manuscript: October 1, 2002
Published: October 7, 2002

Citation
Ali Serpenguzel, Serkan Kucuksenel, and Richard Chang, "Microdroplet identification and size measurement in sprays with lasing images," Opt. Express 10, 1118-1132 (2002)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-20-1118


Sort:  Journal  |  Reset  

References

  1. R. A. Mugele and H. D. Evans: �??Droplet Size Distribution in Sprays,�?? Ind. Eng. Chem. 43, 1317-1324 (1951). [CrossRef]
  2. M. Q. McQuay, R. K. Dubey, and W. A. Nazeer, �??An experimental sturdy on the impact of acoustics and spray quality on the emissions of CO and NO from an ethanol spray flame,�?? Fuel 77, 425-435 (1998).
  3. J. H. Koo and E. D. Hirleman, �??Review of Principles of Optical Techniques for Particle Size Measurements,�?? in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 3-32. [CrossRef]
  4. G. A. Ruff and G. M. Faeth, �??Nonintrusive Measurements of the Structure of Dense Sprays,�?? in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 263-296.
  5. D. J. Holve and S. A. Self, �??Optical particle sizing for in-situ measurements: part I,�?? Appl. Opt. 18, 1632-1645 (1979); D. J. Holve and S. A. Self, �??Optical particle sizing for in-situ measurements: part II,�?? Appl. Opt. 18, 1646-1652 (1979). [CrossRef] [PubMed]
  6. J. S. Batchelder and M. A. Taubenblatt, �??Interferometric detection of forward scattered light from small particles,�?? Appl. Phys. Lett. 55, 215-217 (1989). [CrossRef]
  7. M. Golombok, V. Morin, and C. Mounaim-Rousselle, �??Droplet diameter and the interference fringes between reflected and refracted light,�?? J. Phys. D: Appl. Phys. 31, 59-62 (1998). [CrossRef]
  8. W. D. Bachalo, �??Method for measuring the size and velocity of spheres by dual-beam light-scatter interferometry,�?? Appl. Opt. 19, 363-370 (1980). [CrossRef] [PubMed]
  9. A. Mansour and N. Chigier, �??Air-blast atomization of non-Newtonian liquids,�?? J. Non-Newtonian liquids 58, 161-194 (1995). [CrossRef]
  10. D. R. Secker, P. H. Kaye, R. S. Greenaway, E. Hirst, D. L. Bartley, and G. Videen, �??Light scattering from deformed droplets and droplets with inclusions. 1. Experimental results,�?? Appl. Opt. 39, 5023-5030 (2000). [CrossRef]
  11. D. C. Herpfer and San-Mou Jeng, �??Planar Measurements of Droplet Velocities and Sizes Within a Simplex Atomizer,�?? AIAA J. 35, 127-132 (1997). [CrossRef]
  12. B. D. Stojkovic and V. Sick, "Evolution and impingement of an automotive fuel spray investigated with simultaneous Mie/LIF techniques," Appl. Phys. B 73, 75-83 (2001). [CrossRef]
  13. R. A. Dobbins and G. S. Jizmagian, �??Particle size measurements based on the use of mean scattering cross sections,�?? J. Opt. Soc. Am. 56, 1351-1354 (1966). [CrossRef]
  14. R.R. Maly, G.W. Mayer, B. Reck, and R.A. Schaudt, "Optical Diagnostic for Diesel-Sprays with µs-Time Resolution," SAE paper 910727, (1991).
  15. N. L. Swanson, B. D. Billard, and T. L. Gennaro, �??Limits of optical transmission measurements with application to particle sizing techniques,�?? Appl. Opt. 38, 5887-5893 (1999). [CrossRef]
  16. R. A. Dobbins, L. Crocco, and I. Glassman, �??Measurement of mean particle sizes of sprays from diffractively scattered light,�?? AIAA J. 1, 1882-1886 (1963). [CrossRef]
  17. J. L. Brenguier, T. Bourrianne, A. D. Coelho, J. Isbert, R. Peytavi, D. Trevarin, and P. Weschler, "Improvements of Droplet Size Distribution Measurements with the Fast-FSSP (Forward Scattering Spectrometer Probe)," J. Atmospheric Oceanic Technol. 15, 1077-1090 (1998). [CrossRef]
  18. A. V. Korolev, J. W. Strapp, and G. A. Isaac, �??Evaluation of the accuracy of PMS optical array probes,�?? J. Atmospheric Oceanic Tech. 15, 708-720 (1998). [CrossRef]
  19. T. E. Corcoran, R. Hitron, W. Humphrey, and N. Chigier, �??Optical measurement of nebulizer sprays: a quantitative comparison of diffraction, phase Doppler interferometry, and time of flight techniques,�?? J. Aerosol Sci. 31, 35-50 (1999). [CrossRef]
  20. T. Thorsen, R. W. Roberts, F. H. Arnold, and S. R. Quake, �??Dynamic Pattern Formation in a Vesicle-Generating Microfluidic Device,�?? Phys. Rev. Lett. 86, 4163-4166 (2001). [CrossRef] [PubMed]
  21. N. Dombrowski and R. P. Fraser, "A Photographic Investigation into the Disintegration of Liquid Sheets," Phil. Trans. A 247, 101-130 (1954). [CrossRef]
  22. H. Malot and J. B. Blaisot, �??Droplet size distribution and sphericity measurements of low-density sprays through image analysis,�?? Part. Syst. Charact. 17, 146-158 (2000). [CrossRef]
  23. T. Kamimoto, H. Kobayashi, and S. Matsuoka, "A Big Size Rapid Compression Machine for Fundamental Studies of Diesel Combustion," SAE paper 811004 (1981).
  24. B. A. Weiss, P. Derov, D. DeBiase, and H. C. Simmons, �??Fluid particle sizing using a fully automated optical imaging system,�?? Opt. Eng. 23, 561-566 (1984).
  25. C. R. Tuck, M. C. Butler and P. C. H Miller, �??Techniques for measurement of droplet size and velocity distributions in agricultural sprays,�?? J. Crop Protection 7, 619-628 (1997). [CrossRef]
  26. K. D. Ahlers and D. R. Alexander, �??Microcomputer based digital image processing system developed to count and size laser-generated small particle images,�?? Opt. Eng. 24, 1060-1065 (1985).
  27. A. R. Glover, S. M. Skippon, and R. D. Boyle, �??Interferometric laser imaging for droplet sizing: a method for droplet-size measurement in sparse spray systems,�?? Appl. Opt. 34, 8409-8421 (1995). [CrossRef] [PubMed]
  28. R. Albert and P. V. Farrell, �??Droplet sizing using the Shifrin inversion,�?? J. Fluids Eng. 116, 357-362 (1994). [CrossRef]
  29. K.R. Browne, I.M. Partridge, and G. Greeves, "Fuel Property Effects on Fuel/Air Mixing in an Experimental Diesel Engine," SAE paper 860223 (1986).
  30. N. Chigier, "Optical Imaging of Sprays," Prog. Energy Combust. Sci. 17, 211-262 (1991). [CrossRef]
  31. L. A. Melton and J.F. Verdieck, "Vapor/Liquid Visualization for Fuel Sprays," Combust. Sci. and Tech. 42, 217-222 (1985). [CrossRef]
  32. M. C. Jermy and D. A. Greenhalgh, �??Planar dropsizing by elastic and fluorescence scattering in sprays too dense for phase Doppler measurement,�?? Appl. Phys. B 71, 703-710 (2000). [CrossRef]
  33. W. P. Acker, A. Serpengüzel, R. K. Chang, and S. C. Hill, "Stimulated Raman Scattering of Fuel Droplets: Chemical Concentration and Size Determination," Appl. Phys. B 51, 9-16 (1990). [CrossRef]
  34. M. Golombok and D. B. Pye, �??Droplet sizing in fuel injections by stimulated Raman scattering,�?? Opt. Lett. 15, 872-874 (1990). [CrossRef] [PubMed]
  35. L. A. Melton, "Spectrally Separated Fluorescence Emissions for Diesel Fuel Droplets and Vapor," Appl. Opt. 22, 2224-2226 (1983). [CrossRef] [PubMed]
  36. D. A. Gromov, K. M. Dyumaev, A. A. Manenkov, A. P. Maslyukov, G. A. Matyushin, V. S. Nechitailo, and A. M. Prokhorov , �??Efficient plastic-host dye lasers,�?? J. Opt. Soc. Am. B 2, 1208-1031 (1985). [CrossRef]
  37. C.-N. Yeh, H. Kosaka, and T. Kamimoto, �??Measurement of drop sizes in unsteady dense sprays,�?? in Recent Advances in Spray Combustion: Spray Atomization and Drop Burning Phenomena, K.K. Kuo, Ed. (AIAA, Virginia, 1996). pp. 297-308.
  38. A. Serpengüzel, J. C. Swindal, R. K. Chang, and W. P. Acker, "Two-dimensional imaging of sprays with fluorescence, lasing, and stimulated Raman scattering," Appl. Opt. 31, 3543-3551 (1992). [CrossRef] [PubMed]
  39. Y. Yamamoto, F. Tassone, and H. Cao, Semiconductor Cavity Quantum Electrodynamics (Springer-Verlag, New York, 2000).
  40. P. R. Berman, Ed., Cavity Quantum Electrodynamics (Academic Press, San Diego, 1993).
  41. Y. Yamamoto and A. Imamoglu, Mesoscopic Quantum Optics (Wiley, New York, 1999).
  42. J. Rarity and C. Weisbuch, Eds., Microcavities and Photonic Bandgaps: Physics and Applications, (Kluver, Dordrecht, 1996). [CrossRef]
  43. E. M. Purcell, "Spontaneous Emission Probabilities at Radio Frequencies," Phys. Rev. 69, 681 (1946).
  44. P. W. Milloni and P. L. Knight, "Spontaneous emission between mirrors," Opt. Commun. 9, 119 - 122 (1973). [CrossRef]
  45. F. De Martini, G. Innocenti, G. R. Jacobowitz, and P. Mataloni, "Anomalous Spontaneous Emission Time in a Microscopic Optical Cavity," Phys. Rev. Lett. 59, 2955 - 2958 (1987). [CrossRef] [PubMed]
  46. H. Yokoyama, K. Nishi, T. Anan, H. Yamada, S. D. Brorson, and E. P. Ippen, "Enhanced Spontaneous Emission from GaAs quantum Wells in Monolithic Microcavities," Appl. Phys. Lett. 57, 2814 - 2816 (1990). [CrossRef]
  47. G. Björk, S. Machida, Y. Yamamoto, and K. Igeta, "Modification of spontaneous emission rate in planar dielectric microstructures," Phys. Rev. A 44, 669 - 681 (1991).
  48. M. S. Skolnick, T. A. Fisher, and D. M. Whittaker, "Strong Coupling Phenomena in Quantum Microcavity Structures," Semiconductor Science Technol. 13, 645 - 669 (1998). [CrossRef]
  49. Y. Zhu, J. Gauthier, S. E. Morin, Q. Wu, H.J. Carmichael, and T.W. Mossberg, "Vacuum Rabi splitting as a feature of linear dispersion theory: analysis and experimental observations," Phys Rev. Lett. 64, 2499 - 2502 (1990). [CrossRef] [PubMed]
  50. C. Weisbuch, M. Nishioka, A. Ishikawa, and Y. Arakawa, "Observation of coupled exciton-photon mode splitting in a semiconductor quantum microcavity," Phys. Rev. Lett. 69, 3314 - 3317 (1992). [CrossRef] [PubMed]
  51. S. Pau, G. Björk, J. Jacobson, H. Cao, and Y. Yamamoto, "Microcavity exciton-polariton splitting in the linear regime," Phys. Rev. B 51, 14437 - 14447 (1995). [CrossRef]
  52. D. G. Lidzey, D. D. C. Bradley, S. J. Martin, and M. A. Pate, "Pixelated multicolor microcavity displays," IEEE J. Select. Topics Quantum Electron. 4, 113 (1998). [CrossRef]
  53. H. Yokoyama and K. Ujihara, Eds., Spontaneous emission and laser oscillation in microcavities, (CRC Press, Boca Raton, 1995).
  54. M. S. �?nlü and S. Strite, "Resonant Cavity Enhanced Photonic Devices," J. Appl. Phys. 78, 607 (1995). [CrossRef]
  55. H. Benisty, H. De Neve, and C. Weisbuch, "Impact of Planar Microcavity Effects on Light Extraction - Part I: Basic Concepts and Analytical Trends," IEEE J. Select. Top. Quantum Electron. 34, 1612 (1998). [CrossRef]
  56. R. E. Slusher and C. Weisbuch, "Optical microcavities in condensed matter systems," Solid State Commun. 92 149 (1994). [CrossRef]
  57. E. F. Schubert, Y.-H. Wang, A. Y. Cho, l. W. Tu, and G. J. Zydzik, "Resonant Cavity Light Emitting Diode," Appl. Phys. Lett. 60, 921 (1992). [CrossRef]
  58. H. Yokoyama, K. Nishi, T. Anan, Y. Nambu, S. D. Brorson, E. P. Ippen, and M. Suzuki, "Controlling spontaneous emission and threshold-less laser oscillation with optical microcavities," Opt. Quantum Electron. 24, S245 (1992). [CrossRef]
  59. Y. Yamamoto, S. Machida, and G. Björk, "Microcavity semiconductor laser with enhanced spontaneous emission," Phys. Rev A 44 657 (1991). [CrossRef] [PubMed]
  60. J.V. Sandusky and S. R. J. Brueck, "Observation of spontaneous emission microcavity effects in an external-cavity surface emitting laser structure," Appl. Phys. Lett. 69, 3993 (1996). [CrossRef]
  61. S. L. McCall, A. F. J. Levi, R. E. Slusher, S. J. Pearton, and R. A. Logan, "Whispering Gallery Mode Microdisk Lasers," Appl. Phys. Lett. 60, 289 (1992). [CrossRef]
  62. J. P. Zhang, D. Y. Chu, S. L. Wu, S. T. Ho, W. G. Bi, C. W. Tu, and R. C. Tiberio, "Photonic Wire Laser," Phys. Rev. Lett. 75, 2678 (1995). [CrossRef] [PubMed]
  63. R. K. Chang and A. J. Campillo, Eds., Optical Processes in Microcavities (World Scientific, Singapore, 1996).
  64. P. W. Barber and R. K. Chang, Eds., Optical Effects Associated With Small Particles (World Scientific, Singapore, 1988).
  65. A. Ashkin, and J. M. Dziedzic, "Observation of Resonances in the Radiation Pressure on Dielectric Spheres," Phys. Rev. Lett. 38, 1351-1354 (1977). [CrossRef]
  66. R. K. Chang, "Micrometer-Size Droplets as Optical Cavities: Lasing and Other Non-linear Effects," in Advances in Laser Science-II, M. Lapp, W.C. Stwalley, and G. A. Kenny-Wallace, eds. (American Institute of Physics, New York, 1987), pp. 509-515.
  67. R. E. Benner, P. W. Barber, J. F. Owen, and R. K. Chang, "Observation of Structure Resonances in the Fluorescence Spectra from Microspheres," Phys. Rev. Lett. 44, 475-478 (1980). [CrossRef]
  68. D. S. Benincasa, P. W. Barber, J. -Z. Zhang, W. -F. Hsieh, and R. K. Chang, "Spatial Distribution of the Internal and Near-Field Intensities of Large Cylindrical and Spherical Scatterers," Appl. Opt. 26, 1348-1356 (1987). [CrossRef] [PubMed]
  69. S. C. Ching, H. M. Lai, and K. Young, "Dielectric Microspheres as Optical Cavities: Thermal Spectrum and Density of States," J. Opt. Soc. Am. B 4, 1995-2003 (1987). [CrossRef]
  70. S. -X. Qian, J. B. Snow, H. -M. Tzeng, and R. K. Chang, "Lasing Droplets: Highlighting the Liquid-Air Interface by Laser Emission," Science 231, 486-488 (1986). [CrossRef] [PubMed]
  71. P. W. Barber and S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  72. S. C. Hill, and R. E. Benner, "Morphology-Dependent Resonances associated with Stimulated Processes in Microspheres," J. Opt. Soc. Am. B 3, 1509-1514 (1986). [CrossRef]
  73. J. -Z. Zhang, D. H. Leach, and R. K. Chang, "Photon Lifetime within a Droplet: Temporal Determination of Elastic and Stimulated Raman Scattering," Opt. Lett. 13, 270-272 (1988). [CrossRef] [PubMed]
  74. P. R. Conwell, C. K. Rushforth, R. E. Benner, and S. C. Hill, "Efficient Automated Algorithm for the Sizing of Dielectric Microspheres using the Resonance Spectrum," J. Opt. Soc. Am. A 1, 1181-1186 (1984). [CrossRef]
  75. H.-B. Lin, J. D. Eversole, and A. J. Campillo, "Identification of Morphology Dependent Resonances in Stimulated Raman Scattering from Microdroplets," Opt. Commun. 77, 407-410 (1990). [CrossRef]
  76. E. J. Davis and G. Schweiger, The Airborne Microparticle: Its Physics, Chemistry, Optics, and Transport Phenomena (Springer, Berlin, 2002). pp. 350-351.
  77. A. S. Kwok, C. F. Wood, and R. K. Chang, "Fluorescence Imaging of CO2 Laser-Heated Droplets," Opt. Lett. 15, 664-666 (1990). [CrossRef] [PubMed]
  78. R. C. Pfaffenberger and J. H. Patterson, Statistical Methods for Business and Economics, (Irwin, Homewood, Illinois,1987) pp. 1025-1032
  79. J. Benjamin and C. Cornell, Probability, Statistics, and Decision for Civil Engineers, (McGraw-Hill, New York, 1970) pp. 478-480.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited