OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 21 — Oct. 21, 2002
  • pp: 1161–1166

Velocity matching by pulse front tilting for large-area THz-pulse generation

János Hebling, Gábor Almási, Ida Z. Kozma, and Jürgen Kuhl  »View Author Affiliations


Optics Express, Vol. 10, Issue 21, pp. 1161-1166 (2002)
http://dx.doi.org/10.1364/OE.10.001161


View Full Text Article

Enhanced HTML    Acrobat PDF (749 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a generally applicable velocity matching method for THz-pulse generation by optical rectification in the range below the phonon frequency of the nonlinear material. Velocity matching is based on pulse front tilting of the ultrashort excitation pulse and is able to produce a large-area THz beam. Tuning of the THz radiation by changing the tilt angle is experimentally demonstrated for a narrow line in the range between 0.8-0.97 times the phonon frequency. According to model calculations broadband THz radiation can be generated at lower frequencies. Advantages of the new velocity matching technique in comparison to the electro-optic Cherenkov effect and non-collinear beam mixing are discussed.

© 2002 Optical Society of America

OCIS Codes
(190.2620) Nonlinear optics : Harmonic generation and mixing
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Research Papers

History
Original Manuscript: August 6, 2002
Revised Manuscript: September 26, 2002
Published: October 21, 2002

Citation
Janos Hebling, Gabor Almasi, Ida Kozma, and Jurgen Kuhl, "Velocity matching by pulse front tilting for large area THz-pulse generation," Opt. Express 10, 1161-1166 (2002)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-21-1161


Sort:  Journal  |  Reset  

References

  1. D. H. Auston, K.P. Cheung, J. A. Valdmanis and D. A. Kleinman, �??Cherenkov radiation from femtosecond optical pulses in electro-optic media,�?? Phys. Rev. Lett. 53, 1555-1558 (1984). [CrossRef]
  2. A. Nahata, A.S. Weling and T.F. Heinz, �??A wideband coherent terahertz spectroscopy system using optical rectification and electro-optic sampling,�?? Appl. Phys. Lett. 69, 2321-2323 (1996). [CrossRef]
  3. Q. Wu and X.-C. Zhang, �??Free-space electro-optic sampling of mid-infrared pulses,�?? Appl. Phys. Lett. 71, 1285-1286 (1997). [CrossRef]
  4. D. Grischkowsky, S. Keiding, M. van Exter and C. Fattinger, �??Far-infrared time-domain spectroscopy with terahertz beams of dielectrics and semiconductors,�?? J. Opt. Soc. Am. B 7, 2006-2015 (1990). [CrossRef]
  5. M. C. Nuss, P. M. Mankiewich, M. L. O�??Malley, E. H. Westerwick and P. B. Littlewood, �??Dynamic conductivity and coherence peak in YBa2Cu3O7 superconductors,�?? Phys. Rev. Lett. 66, 3305-3308 (1991). [CrossRef] [PubMed]
  6. A. Leitenstorfer, S. Hunsche, J. Shah, M. C. Nuss and W. H. Knox, �??Femtosecond charge transport in polar semiconductors,�?? Phys. Rev. Lett. 82, 5140-5143 (1999). [CrossRef]
  7. B. E. Cole, J. B. Williams, B. T. King, M. S. Sherwin and C. R. Stanley, �??Coherent manipulation of semiconductor quantum bits with terahertz radiation,�?? Nature 410, 60-63 (2001). [CrossRef] [PubMed]
  8. D. M. Mittelman, S. Hunsche, L. Boivin and M. C. Nuss, �??T-ray tomography,�?? Opt. Lett. 22, 904-906 (1997). [CrossRef]
  9. R. Huber, A. Brodschelm, F. Tauser and A. Leitenstorfer, �??Generation and field-resolved detection of femtosecond electromagnetic pulses tunable up to 41 THz,�?? Appl. Phys. Lett. 76, 3191-3193 (2000). [CrossRef]
  10. A.S. Barker and R. Loudon, �??Response function in the theory of Raman scattering by vibrational and polariton modes in dielectric crystals,�?? Rev. Mod. Phys. 44, 18-47 (1972). [CrossRef]
  11. H.J. Bakker, G.C. Cho, H. Kurz, Q. Wu and X.-C. Zhang, �??Distortion of terahertz pulses in electro-optic sampling,�?? J. Opt. Soc. Am. B 15, 1795-1801 (1998). [CrossRef]
  12. T. E. Stevens, J. K. Wahlstrand, J. Kuhl and R. Merlin, �??Cherenkov radiation at speeds below the light threshold: Phonon assisted phase matching,�?? Science 291, 627-630 (2001). [CrossRef] [PubMed]
  13. D. A. Kleinman and D. H. Auston, �??Theory of electrooptic shock radiation in nonlinear optical media,�?? IEEE J. Quantum Electron. 20, 964-970 (1984). [CrossRef]
  14. Zs. Bor and B. Racz, �??Group velocity dispersion in prisms and its application to pulse compression and travelling-wave excitation,�?? Opt. Commun. 54, 165-170 (1985). [CrossRef]
  15. J. Hebling, �??Derivation of the pulse front tilt caused by angular dispersion,�?? Opt. Quantum Electron. 28, 1759-1763 (1996). [CrossRef]
  16. P.A. Tipler, Physics for scientists and engineers (W.H. Freeman and Company, 1999).
  17. S. Ushioda and J.D. McMullen, �??Measurement of the frequency dependence of the phonon damping function by Raman scattering from polaritons in GaP,�?? Solid State Commun. 11, 299-304 (1972). [CrossRef]
  18. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited