OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 22 — Nov. 4, 2002
  • pp: 1279–1284

Band-dropping via coupled photonic crystal waveguides

Mehmet Bayindir and Ekmel Ozbay  »View Author Affiliations

Optics Express, Vol. 10, Issue 22, pp. 1279-1284 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (694 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We observe the dropping of electromagnetic waves having a specific frequency or a certain frequency band in two-dimensional dielectric photonic crystals. The single frequency is dropped via cavity-waveguide coupling. Tunability of the demultiplexing mode can be achieved by modifying the cavity properties. The band-dropping phenomenon is achieved by introducing interaction between an input planar, or coupled-cavity, waveguide and the output coupled-cavity waveguides (CCWs). The dropping band can be tuned by changing the coupling strength between the localized cavity modes of the output CCWs. We also calculate the transmission spectra and the field patterns by using the finite-difference-time-domain (FDTD)method. Calculated results agree well with the microwave measurements.

© 2002 Optical Society of America

OCIS Codes
(060.4230) Fiber optics and optical communications : Multiplexing
(230.7370) Optical devices : Waveguides

ToC Category:
Research Papers

Original Manuscript: September 19, 2002
Revised Manuscript: October 23, 2002
Published: November 4, 2002

Mehmet Bayindir and Ekmel Ozbay, "Band-dropping via coupled photonic crystal waveguides," Opt. Express 10, 1279-1284 (2002)

Sort:  Journal  |  Reset  


  1. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton University Press,Princeton, NJ, 1995).
  2. C. M. Soukoulis, ed., Photonic Crystals and Light Localization in the 21st Century (Kluwer, Dortrecht, 2001).
  3. A. Mekis, J. C. Chen, I. Kurland, S. Fan, P. R. Villeneuve, and J. D. Joannapoulos, �??High transmission through sharp bends in photonic crystal waveguides,�?? Phys. Rev. Lett. 77, 3787�??3790 (1996). [CrossRef] [PubMed]
  4. M. Bayindir, B. Temelkuran, and E. Ozbay, �??Propagation of photons by hopping: A waveguiding mechanism through localized coupled-cavities in three-dimensional photonic crystals,�?? Phys. Rev. B 61, R11855�??R11858 (2000). [CrossRef]
  5. M. Loncar, D. Nedeljkovic, T. Doll, J. Vuckovic, A. Scherer, and T. P. Pearsall, �??Waveguiding in planar photonic crystals,�?? Appl. Phys. Lett. 77, 1937�??1939 (2000). [CrossRef]
  6. O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O�??Brien, P. D. Dapkus, and I. Kim, �??Two dimensional photonic band-gap defect mode laser,�?? Science 284, 1819�??1821 (1999). [CrossRef] [PubMed]
  7. S. Noda, M. Yokoyama, M. Imada, A. Chutinan, and M. Mochizuki, �??Polarization mode control of two-dimensional photonic crystal laser by unit cell structure design,�?? Science 293, 1123�??1125 (2001). [CrossRef] [PubMed]
  8. J. Yonekura, M. Ikeda, and T. Baba, �??Analysis of finite 2-D photonic crystals of columns and lightwave devices using the scattering matrix method,�?? J. Lightwave Technol. 17, 1500�??1508 (1999). [CrossRef]
  9. M. Bayindir, B. Temelkuran, and E. Ozbay, �??Photonic crystal based beam splitters,�?? Appl. Phys. Lett. 77, 3902�??3904 (2000). [CrossRef]
  10. J. C. Knight, J. Broeng, T. A. Birks, and P. S. J. Russell, �??Photonic band gap guidance in optical fibers,�?? Science 282, 1476�??1479 (1998). [CrossRef] [PubMed]
  11. H. Kosaka, T. Kawashima, A. Tomita, M. Notomi, T. Tamamura, T. Sato, and S. Kawakami, �??Photonic crystals for micro lightwave circuits using wavelength- dependent angular beam steering,�?? Appl. Phys. Lett. 74, 1370�??1372 (1999). [CrossRef]
  12. A. de Lustrac, F. Gadot, S. Cabaret, J.-M. Lourtioz, T. Brillat, A. Priou, and A. E. Akmansoy, �??Experimental demonstration of electrically controllable photonic crystals at centimeter wavelengths,�?? Appl. Phys. Lett. 75, 1625�??1627 (1999). [CrossRef]
  13. P. R. Villeneuve, D. S. Abrams, S. Fan, and J. D. Joannopoulos, �??Single-mode waveguide microcavity for fast optical switching,�?? Opt. Lett. 21, 2017�??2019 (1996). [CrossRef] [PubMed]
  14. S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and H. A. Haus, �??Channel drop tunneling through localized states,�?? Phys. Rev. Lett. 80, 960�??963 (1998). [CrossRef]
  15. S. Noda, A. Chutinan, and M. Imada, �??Trapping and emission of photons by a single defect in a photonic bandgap structure,�?? Nature 407, 608�??610 (2000). [CrossRef] [PubMed]
  16. B. E. Nelson, M. Gerken, D. A. B. Miller, R. Piestun, C.-C. Lin, and J. S. Harris, �??Use of a dielectric stack as a one-dimensional photonic crystal for wavelength demultiplexing by beam shifting,�?? Opt. Lett. 25, 1502�??1504 (2000). [CrossRef]
  17. S. S. Oh, C.-S. Kee, J.-E. Kim, H. Y. Park, T. I. Kim, I. Park, and H. Lim, �??Duplexer using microwave photonic band gap structure,�?? Appl. Phys. Lett. 76, 2301�??2303 (2000). [CrossRef]
  18. M. Koshiba, �??Wavelength division multiplexing and demultiplexing with photonic crystal waveguide couplers,�?? J. Lightwave Technol. 19, 1970�??1975 (2001). [CrossRef]
  19. A. Sharkawy, S. Shi, and D. W. Prather, �??Multichannel wavelength division multiplexing with photonic crystals,�?? Appl. Opt. 40, 2247�??2252 (2001). [CrossRef]
  20. C. Jin, S. Han, X. Meng, B. Cheng, and D.Zhang, �??Demultiplexer using directly resonant tunneling between point defects and waveguides in a photonic crystal,�?? J. Appl. Phys. 91, 4771�??4773 (2002). [CrossRef]
  21. M. Bayindir and E. Ozbay, �??Dropping of electromagnetic waves through localized modes in three dimensional photonic band gap structures,�?? Submitted to Appl. Phys. Lett.
  22. E. Ozbay, M. Bayindir, I. Bulu, and E. Cubukcu, �??Investigation of localized coupled-cavity modes in two-dimensional photonic band gap structures,�?? IEEE J. Quantum Electron. 38, 837�??843 (2002). [CrossRef]
  23. M. Bayindir, B. Temelkuran, and E. Ozbay, �??Tight-binding description of the coupled defect modes in three-dimensional photonic crystals,�?? Phys. Rev. Lett. 84, 2140�??2143 (2000). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited