OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 23 — Nov. 18, 2002
  • pp: 1320–1333

Analysis of spectral characteristics of photonic bandgap waveguides

A. K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton  »View Author Affiliations


Optics Express, Vol. 10, Issue 23, pp. 1320-1333 (2002)
http://dx.doi.org/10.1364/OE.10.001320


View Full Text Article

Enhanced HTML    Acrobat PDF (575 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A numerical model based on a scalar beam propagation method is applied to study light transmission in photonic bandgap (PBG) waveguides. The similarity between a cylindrical waveguide with concentric layers of different indices and an analogous planar waveguide is demonstrated by comparing their transmission spectra that are numerically shown to have coinciding wavelengths for their respective transmission maxima and minima. Furthermore, the numerical model indicates the existence of two regimes of light propagation depending on the wavelength. Bragg scattering off the multiple high-index/low-index layers of the cladding determines the transmission spectrum for long wavelengths. As the wavelength decreases, the spectral features are found to be almost independent of the pitch of the multi-layer Bragg mirror stack. An analytical model based on an antiresonant reflecting guidance mechanism is developed to accurately predict the location of the transmission minima and maxima observed in the simulations when the wavelength of the launched light is short. Mode computations also show that the optical field is concentrated mostly in the core and the surrounding first high-index layers in the short-wavelength regime while the field extends well into the outermost layers of the Bragg structure for longer wavelengths. A simple physical model of the reflectivity at the core/high-index layer interface is used to intuitively understand some aspects of the numerical results as the transmission spectrum transitions from the short- to the long-wavelength regime.

© 2002 Optical Society of America

OCIS Codes
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(230.1480) Optical devices : Bragg reflectors
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Research Papers

History
Original Manuscript: October 14, 2002
Revised Manuscript: October 31, 2002
Published: November 18, 2002

Citation
Akheelesh Abeeluck, N. Litchinitser, C. Headley, and B. Eggleton, "Analysis of spectral characteristics of photonic bandgap waveguides," Opt. Express 10, 1320-1333 (2002)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-23-1320


Sort:  Journal  |  Reset  

References

  1. P. V. Kaiser and H. W. Astle, �??Low-loss single-material fibers made from pure fused silica,�?? The Bell System Technical Journal 53, 1021-1039 (1974).
  2. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, �??Microstructured optical fiber devices,�?? Opt. Express 9, 698-713 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698</a>. [CrossRef] [PubMed]
  3. P. S. Westbrook, B. J. Eggleton, R. S. Windeler, A. Hale, T. A. Strasser, and G. L. Burdge, �??Cladding-Mode Resonances in Hybrid Polymer-Silica Microstructured Optical Fiber Gratings,�?? IEEE Photon. Technol. Lett. 12, 495-497 (2000). [CrossRef]
  4. C. Kerbage, B. J. Eggleton, P. S. Westbrook, and R. S. Windeler, �??Experimental and scalar beam propagation analysis of an air-silica microstructure fiber,�?? Opt. Express 7, 113-122 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-113">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-7-3-113</a> [CrossRef] [PubMed]
  5. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, �??Single-mode photonic band gap guidance of light in air,�?? Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  6. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, �??Tunable photonic band gap fiber,�?? in OSA Trends in Optics and Photonics (TOPS) Vol. 70, Optical Fiber Communication Conference, Technical Digest, Postconference Edition (Optical Society of America, Washington DC, 2002), pp. 466-468.
  7. A. Ferrando, E. Silvestre, J. J. Miret, and P. Andres, �??Full-vector analysis of a realistic photonic crystal fiber,�?? Opt. Lett. 24, 276-278 (1999). [CrossRef]
  8. D. Mogilevtsev, T. A. Birks, and P. St. J. Russell, �??Group-velocity dispersion in photonic crystal fibers,�?? Opt. Lett. 23, 1662-1664 (1998). [CrossRef]
  9. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botten, and M. J. Steel, �??Confinement losses in microstructured optical fibers,�?? Opt. Lett. 26, 1660-1662 (2001). [CrossRef]
  10. T. M. Monro, D. J. Richardson, N. G. R. Broderick, and P. J. Bennett, �??Modeling large air fraction holey optical fibers,�?? J. Lightwave Technol. 18, 50-56 (2000). [CrossRef]
  11. P. Yeh, A. Yariv, and E. Marom,�??Theory of Bragg fiber,�?? J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  12. A. Yariv and P. Yeh, Optical Waves in Crystals: Propagation and Control of Laser Radiation (John Wiley & Sons, Inc., New York, 1984).
  13. M. Deopura, C. K. Ullal, B. Temelkuran, and Y. Fink, �??Dielectric omnidirectional visible reflector,�?? Opt. Lett. 26, 1197-1199 (2001). [CrossRef]
  14. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, �??Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,�?? Opt. Express 9, 748-779 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748</a>. [CrossRef] [PubMed]
  15. M. D. Feit and J. A. Fleck, �??Computation of mode eigenfunctions in graded-index optical fibers by the propagating beam method,�?? Appl. Opt. 19, 2240-2246 (1980). [CrossRef]
  16. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, �??Numerical techniques for modeling guided-wave photonic devices,�?? IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000). [CrossRef]
  17. BeamPROP software, version 4.0, Rsoft, Inc.
  18. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, �??Antiresonant reflecting photonic crystal optical waveguides,�?? Opt. Lett. 27, 1592-1594 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited