OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 25 — Dec. 16, 2002
  • pp: 1444–1450

Characterization of laser induced damage sites in optical components

Stavros G. Demos, Mike Staggs, Kaoru Minoshima, and James Fujimoto  »View Author Affiliations


Optics Express, Vol. 10, Issue 25, pp. 1444-1450 (2002)
http://dx.doi.org/10.1364/OE.10.001444


View Full Text Article

Enhanced HTML    Acrobat PDF (852 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Optical components for large-aperture laser systems may contain a number of defect (damage) sites formed as a result of exposure to the propagating laser beam. When exposed to high-power laser irradiation, a number of damage sites tend to grow. In this work, we explore fluorescence microscopy and optical coherence tomography for the characterization of such defect sites. Fluorescence microscopy demonstrates the presence of a layer of highly emissive, and therefore absorbing, modified material. Optical coherence tomography can image the network of cracks formed around the core of the damage site. This information may be useful for the application of a mitigation process to prevent damage growth.

© 2002 Optical Society of America

OCIS Codes
(110.4190) Imaging systems : Multiple imaging
(160.4670) Materials : Optical materials
(350.1820) Other areas of optics : Damage

ToC Category:
Research Papers

History
Original Manuscript: November 5, 2002
Revised Manuscript: November 27, 2002
Published: December 16, 2002

Citation
Stavros Demos, Mike Staggs, Kaoru Minoshima, and James Fujimoto, "Characterization of laser induced damage sites in optical components," Opt. Express 10, 1444-1450 (2002)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-25-1444


Sort:  Journal  |  Reset  

References

  1. K. Moriya, T. Ogawa, �??Observation of dislocations in a synthetic quartz crystal by light scattering tomography,�?? Philosophical Magazine A (Physics of Condensed Matter, Defects and Mechanical Properties) 41, 191-200 (1980).
  2. Peizhen Deng, Jingwen Qiao, "Study of defects in Nd:YAG crystals by laser light scattering tomography (LLST)," J. Crystal Growth 82, 579-583 (1987). [CrossRef]
  3. J.P. Fillard, P. Gall, A. Baroudi, A. George, J. Bonnafe, "Defect structures in InP crystals by laser scanning tomography," J. Appl. Phys. (Jpn) 26, 1255-1257 (1987). [CrossRef]
  4. J. Furukawa, H. Furuya, T. Shingyouji, "Detection of bulk microdefects underneath the surface of Si wafer using infrared light scattering tomography," J. Appl. Phys. (Jpn) 32, 5178-5179 (1993). [CrossRef]
  5. D. Huang, E. A. Swanson, C. P. Lin, J. S. Schuman, W. G. Stinson, W. Chang, M. R. Hee, T. Flotte, K. Gregory, C. A. Puliafito, J. G. Fujimoto, �??Optical coherence tomography,�?? Science 254, 1178-1181 (1991). [CrossRef] [PubMed]
  6. J. G. Fujimoto, C. Pitris, S. Boppart, and M. Brezinski, �??Optical coherence tomography, an emerging technology for biomedical imaging and optical biopsy,�?? Neoplasia 2, 9-25 (2000). [CrossRef] [PubMed]
  7. J. P. Dunkers, F. R. Phelan, C. G. Zimba, K. M. Flynn, D. P. Sanders, R. C. Peterson, R. S. Parnas, X. Li, and J. G. Fujimoto, �??The prediction of permeability for an epoxy/E-glass composite using optical coherence tomographic images,�?? Polym. Compos. 22, 803-814 (2001). [CrossRef]
  8. K. Minoshima, A. M. Kowalevicz, I. Hartl, E. P. Ippen, and J. G. Fujimoto, �??Photonic device fabrication in glass by use of nonlinear materials processing with a femtosecond laser oscillator,�?? Opt. Lett. 26, 1516-1518 2001. [CrossRef]
  9. A. Gruber, A. Drabenstedt, C. Tietz, L. Fleury, J. Wrachtrup, C. Vov Borczyskowski, �??Scanning confocal optical microscopy and magnetic resonance on single defect centers,�?? Science 276, 5321 (1997) [CrossRef]
  10. S. G. Demos, M. Staggs, M. Yan, H. B. Radousky and J. J. De Yoreo �??Microscopic fluorescence imaging of bulk defect clusters in KH2PO4 crystals,�?? Opt. Lett. 24, 268 (1999). [CrossRef]
  11. S. G. Demos, M. Staggs, H. B. Radousky and J. J. De Yoreo �??Imaging of laser-induced defect reactions of individual defect nano clusters,�?? Opt. Lett. 26, 1975-1977 (2001). [CrossRef]
  12. E. M. Campbell, �??The National-Ignition-Facility project,�?? Fusion Technol. 26, 755-766 (1994).
  13. S. G. Demos, M. Staggs, "Application of fluorescence microscopy for noninvasive detection of surface contamination and precursors to laser-induced damage,�?? Appl. Opt. 41, 1977-1983 (2002). [CrossRef] [PubMed]
  14. S. G. Demos, A. Burnham, P. Wegner, M. Norton, L. Zeller, M. Runkel, M.R. Kozlowski, M. Staggs, H. B. Radousky, �??Surface defect generation in optical materials under high fluence laser irradiation in vacuum,�?? Electron. Lett. 36, 566-567 (2000). [CrossRef]
  15. D. Ehrt, P. Ebeling, U. Natura, �??UV Transmission and radiation-induced defects in phosphate and fluoridephosphate glasses,�?? J. Non-Cryst. Solids 263, 240-250 (2000). [CrossRef]
  16. M. A. Norton, L. W. Hrubesh, Z. Wu, E. E. Donohue, M. D. Feit, M.R. Kozlowski, D. Milam, P. C. Neeb, W. A. Molander, A. M. Rubenchic, W. D. Sell, P. J. Wegner, �??Growth of laser initiated damage in fused silica at 351-nm,�?? G. J. Exarhos, A. H. Guenther, M. R. Kozlowski, K. L. Lewis, M. J. Soileau, Eds., SPIE, 4347, 468 (2000). [CrossRef]
  17. S. G. Demos, M. Staggs, M. R. Kozlowski, �??Investigation of processes leading to damage growth in optical materials for large-aperture lasers,�?? Appl. Opt. 41, 3628-3633 (2002). [CrossRef] [PubMed]
  18. L. Skuja, �??Optically active oxygen-deficiency-related centers in amorphous silicon dioxide,�?? J. Non-Cryst. Solids 239, 16-48 (1998). [CrossRef]
  19. C.D. Marshall, J. A. Speth, S. A. Payne, �??Induced optical absorption in gamma, neutron and ultraviolet irradiated fused silica and quartz,�?? J. Non-Cryst. Solids 212, 59-73 (1997). [CrossRef]
  20. T.K.F. Shimizu-Iwayama, S. Nakao, K. Saitoh, T. Fujita, N. Itoh, �??Visible photoluminescence in Si+- implanted silica glass,�?? J. Appl. Phys. 75, 7779-7783 (1994). [CrossRef]
  21. H. Nishikawa, E. Watanabe, D. Ito, Y. Sakurai, K. Nagasawa, Y. Ohki, �??Visible photoluminescence from si clusters in gamma-irradiated amorphous SiO2,�?? J. Appl. Phys. 80, 3513-3517 (1996). [CrossRef]
  22. M. Wantanabe, S. Juodkazis, H. Sun, S. Matsuo, H. Misawa, �??Transmission and photoluminescence images of three-dimensional memory in vitreous silica,�?? Phys. Rev. B 60, 9959 (1999).
  23. B. C. Stuart, M. D. Feit, A. M. Rubenchik, B. W. Shore and M. D. Perry, �??Nanosecond-to-femptosecond laser induced breakdown in dielectrics,�?? Phys. Rev. B 53, 1749 (1996). [CrossRef]
  24. F. Dahmani, J. C. Lambropoulos, A. W. Schmid, S. Papernov, S. J. Burns, �??Crack arrest and stress dependence of laser-induced surface damage in fused-silica and borosilicate glass,�?? Appl. Opt. 38, 6892 (1999). [CrossRef]
  25. M. Adda-Bedia, R. Arias, M. B. Amar, F. Lund, �??Dynamic instability of brittle fracture,�?? Phys. Rev. Lett. 82, 2314 (1999). [CrossRef]
  26. N. Bloembergen, �??Role of cracks, pores, and absorbing inclusions on laser induced damage threshold at surfaces of transparent dielectrics,�?? Appl. Opt. 12, 661 (1973).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited