OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 25 — Dec. 16, 2002
  • pp: 1508–1519

Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites

David Dayton, John Gonglewski, Sergio Restaino, Jeffrey Martin, James Phillips, Mary Hartman, Stephen Browne, Paul Kervin, Joshua Snodgrass, Nevin Heimann, Michael Shilko, Richard Pohle, Bill Carrion, Clint Smith, and Daniel Thiel  »View Author Affiliations


Optics Express, Vol. 10, Issue 25, pp. 1508-1519 (2002)
http://dx.doi.org/10.1364/OE.10.001508


View Full Text Article

Enhanced HTML    Acrobat PDF (497 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present here results using two novel adaptive optic elements, an electro-static membrane mirror, and a dual frequency nematic liquid crystal. These devices have the advantage of low cost, low power consumption, and compact size. Possible applications of the devices are astronomical adaptive optics, laser beam control, laser cavity mode control, and real time holography. Field experiments were performed on the Air Force Research Laboratory, Directed Energy Directorate’s 3.67 meter AMOS telescope on Maui, Hawaii.

© 2002 Optical Society of America

OCIS Codes
(010.1080) Atmospheric and oceanic optics : Active or adaptive optics
(230.3720) Optical devices : Liquid-crystal devices

ToC Category:
Research Papers

History
Original Manuscript: October 18, 2002
Revised Manuscript: December 10, 2002
Published: December 16, 2002

Citation
David Dayton, John Gonglewski, Sergio Restaino, Jeffrey Martin, James Phillips, Mary Hartman, Paul Kervin, Joshua Snodgress, Stephen Browne, Nevin Heimann, Michael Shilko, Richard Pohle, Bill Carrion, Clint Smith, and Daniel Thiel, "Demonstration of new technology MEMS and liquid crystal adaptive optics on bright astronomical objects and satellites," Opt. Express 10, 1508-1519 (2002)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-25-1508


Sort:  Journal  |  Reset  

References

  1. G. Vdovin, �??Spatial light modulator based on the control of the wave-front curvature,�?? Opts. Commun. 115, 170-178 (1995). [CrossRef]
  2. S. R. Restaino, D. Payne, M. Anderson, J. T. Baker, �??Progress report of USAF Research Laboratory liquid crystal AO program,�?? SPIE 3353, 776-781, Kona, (1998). [CrossRef]
  3. D. C. Dayton, S. R. Restaino, J. D. Gonglewski, �??Laboratory and field demonstration of a low cost membrane mirror adaptive optics system,�?? Opt. Commun. 176, 339-345, (2000). [CrossRef]
  4. S. R. Restaino et.al., �??Use of electro-optical device for path-length compensation,�?? SPIE 2200, 46-48 (1994).
  5. G. D. Love, J. Fender, S. R. Restaino, �??Adaptive wave-front shaping using liquid crystals,�?? Opt. Photon. News 6, 16-20 (1995). [CrossRef]
  6. G. D. Love, �??Wave-front correction and production of Zernike modes with a liquid-crystal spatial light modulator,�?? Appl. Opt. 36, 1517-1524 (1997). [CrossRef] [PubMed]
  7. J. Gourlay, G. D. Love, P. Birch, et. al., �??A real time closed loop liquid crystal adaptive optics system: first results,�?? Opt. Commun. 137, 17-21, (1997). [CrossRef]
  8. D. C. Dayton, S. L. Browne, S. P. Sandven, et. al., �??Theory and laboratory demonstrations on the use of a nematic liquid-crystal phase modulator for controlled turbulence generation and adaptive optics,�?? Appl. Opt. 37, 5579-5589 (1998). [CrossRef]
  9. S. R. Restaino, D. C. Dayton, S. L. Browne, et. al., �??One the use of dual frequency nematic material for adaptive optics systems: first results of a closed-loop experiment,�?? Opt. Express 6, 2-7, (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-2">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-6-1-2</a>. [CrossRef] [PubMed]
  10. D. C. Dayton, S. L. Browne, J. D. Gonglewski, S. R. Restaino, �??Characterization and control of a multielement dual-frequency liquid-crystal device for high-speed adaptive optical wave-front correction,�?? Appl. Opt. 40, 15, 2345-2355 (2001). [CrossRef]
  11. A.F. Naumov, V.N. Belopukhov, �??Dynamic dual-frequency control of nematic liquid crystals in adaptive optic systems,�?? Russian Academy of Science, P.N. Lebedev Physical Institute, Samara branch, Report# SPC97-4015 (1997).
  12. V. A. Dorezyuk, A. F. Naumov, V. I. Shmal�??gauzen, �??Control of liquid-crystal correctors in adaptive optical systems,�?? Sov. Phys. Tech. Phys. 34, 1389-1393 (1989).
  13. M. A. Vorontsov, G. W. Carhart, D. V. Pruidze, J.C. Ricklin, D. G. Voelz, �??Adaptive imaging system for phase-distorted extended source and multiple-distance objects,�?? Appl. Opt. 36, 3319-3328 (1997). [CrossRef] [PubMed]
  14. M. A. Vorontsov, E. W. Justh, L. A. Beresnev, �??Adaptive optics with advanced phase-contrast techniques, I. High-resolution wave-front sensing,�?? J. Opt. Soc. Am. 18, 1289-1299 (2001). [CrossRef]
  15. R. Dou, M. K. Giles, �??Closed-loop adaptive-optics systems with a liquid-crystal television as a phase retarder,�?? Opt. Lett. 20, 1583-1585, (1995). [CrossRef] [PubMed]
  16. D. C. Dayton, S. P. Sandven, J. D. Gonglewski, �??Closed loop control of a micro-machined membrane mirror,�?? SPIE 3866, 183-191, (1999). [CrossRef]
  17. E. S. Claflin and N. Bareket, �??Configuring an electrostatic membrane mirror by least-squares fitting with analytically derived influence functions,�?? J. Opt. Soc. Am A 3, 1833-1839, (1986). [CrossRef]
  18. G. Labrunie, J. Robert, �??Transient behavior of the electrically controlled birefringence in a nematic liquid crystal,�?? J. Appl. Phys. 44, 11, 4869-4874 (1973). [CrossRef]
  19. E. Bonaccini, G. Grusa, S. Esposito, P. Salinari, P. Stefanini, �??Adaptive optics wavefront corrector using addressable liquid crystal retarders II,�?? SPIE 1543, 133-143 (1991).
  20. S. Esposito, G. Bursa, D. Bonaccini, �??Liquid crystal wavefront correctors: computer simulation result,�?? ICO-16 conference on �??Active and Adaptive optics,�?? 289-294 (1993).
  21. G. D. Love, �??Liquid-crystal phase modulator for unpolarized light,�?? Appl. Opt. 32, 2222-2223 (1993). [CrossRef] [PubMed]
  22. T.L. Kelly, G. D. Love. �??White-light performance of a polarization-independent liquid crystal phase modulator,�?? Appl. Opt. 38, 10, 1986-1989 (1999). [CrossRef]
  23. F. M. Leslie, �??Some constitutive equations for liquid crystals,�?? Arch. Ration. Mech. Anal. 28, 265-283 (1968). [CrossRef]
  24. D. C. Dayton, S. P. Sandven, J. D. Gonglewski, et. al., �??Adaptive optics using a liquid crystal phase modulator in conjunction with a Shack-Hartmann wave-front sensor and zonal control algorithm,�?? Opt Express 1, 338-346 (1997), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-1-11-338</a>. [CrossRef]
  25. R. Tyson, Principles of Adaptive Optics, (Academic Press Inc., San Diego, 1991).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material


» Media 1: MPG (1441 KB)     
» Media 2: MPG (2611 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited