OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 3 — Feb. 11, 2002
  • pp: 196–203

Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds

Chris B. Schaffer, Nozomi Nishimura, Eli N. Glezer, Albert M.-T. Kim, and Eric Mazur  »View Author Affiliations


Optics Express, Vol. 10, Issue 3, pp. 196-203 (2002)
http://dx.doi.org/10.1364/OE.10.000196


View Full Text Article

Enhanced HTML    Acrobat PDF (493 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Using time-resolved imaging and scattering techniques, we directly and indirectly monitor the breakdown dynamics induced in water by femtosecond laser pulses over eight orders of magnitude in time. We resolve, for the first time, the picosecond plasma dynamics and observe a 20 ps delay before the laser-produced plasma expands. We attribute this delay to the electron-ion energy transfer time.

© Optical Society of America

OCIS Codes
(140.3440) Lasers and laser optics : Laser-induced breakdown
(190.7110) Nonlinear optics : Ultrafast nonlinear optics

ToC Category:
Research Papers

History
Original Manuscript: December 19, 2001
Revised Manuscript: February 6, 2002
Published: February 11, 2002

Citation
Chris Schaffer, Nozomi Nishimura, Eli Glezer, Albert Kim, and Eric Mazur, "Dynamics of femtosecond laser-induced breakdown in water from femtoseconds to microseconds," Opt. Express 10, 196-203 (2002)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-3-196


Sort:  Journal  |  Reset  

References

  1. K. Miura, J. R. Qiu, H. Inouye, T. Mitsuyu, and K. Hirao, "Photowritten optical waveguides in various glasses with ultrashort pulse laser," Appl. Phys. Lett. 71, 3329 (1997). [CrossRef]
  2. D. Homoelle, S. Wielandy, A. L. Gaeta, N. F. Borrelli, and C. Smith, "Infrared photosensitivity in silica glasses exposed to femtosecond laser pulses," Opt. Lett. 24, 1311 (1999). [CrossRef]
  3. E. N. Glezer, M. Milosavljevic, L. Huang, R. J. Finlay, T. H. Her, J. P. Callan, and E. Mazur, "Three dimensional optical storage inside transparent materials," Opt. Lett. 21, 2023 (1996). [CrossRef] [PubMed]
  4. C. B. Schaffer, A. Brodeur, J. F. Garcia, and E. Mazur, "Micromachining bulk glass by use of femtosecond laser pulses with nanojoule energy," Opt. Lett. 26, 93 (2001). [CrossRef]
  5. T. Juhasz, H. Frieder, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, "Corneal refractive surgery with femtosecond lasers," IEEE J. Sel. Top. Quantum Electron. 5, 902 (1999). [CrossRef]
  6. F. H. Loesel, J. P. Fischer, M. H. Gotz, C. Horvath, T. Juhasz, F. Noack, N. Suhm, and J. F. Bille, "Nonthermal ablation of neural tissue with femtosecond laser pulses," Appl. Phys. B 66, 121 (1998).
  7. K. Konig, I. Riemann, and W. Fritzsche, "Nanodissection of human chromosomes with near-infrared femtosecond laser pulses," Opt. Lett. 26, 819 (2001). [CrossRef]
  8. N. Shen, C. B. Schaffer, D. Datta, and E. Mazur, "Photodisruption in biological tissues and single cells using femtosecond laser pulses," in Conference on Lasers and Electro-Optics (Optical Society of America, Washington, DC, 2001), Vol. 56, p. 403 .
  9. A. A. Oraevsky, L. B. DaSilva, A. M. Rubenchik, M. D. Feit, M. E. Glinsky, M. D. Perry, B. M. Mammini, W. Small, and B. C. Stuart, "Plasma mediated ablation of biological tissues with nanosecond to-femtosecond laser pulses: Relative role of linear and nonlinear absorption," IEEE J. Sel. Top. Quantum Electron. 2, 801 (1996). [CrossRef]
  10. E. N. Glezer and E. Mazur, "Ultrafast-laser driven micro-explosions in transparent materials," Appl. Phys. Lett. 71, 882 (1997). [CrossRef]
  11. M. Lenzner, J. Kruger, S. Sartania, Z. Cheng, C. Spielmann, G. Mourou, W. Kautek, and F. Krausz, "Femtosecond optical breakdown in dielectrics," Phys. Rev. Lett. 80, 4076 (1998). [CrossRef]
  12. D. Du, X. Liu, G. Korn, J. Squier, and G. Mourou, "Laser-induced breakdown by impact ionization in sio2 with pulse widths from 7 ns to 150 fs," Appl. Phys. Lett. 64, 3071 (1994). [CrossRef]
  13. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, andM. D. Perry, "Optical ablation by high-power short-pulse lasers," J. Opt. Soc. Am. B 13, 459 (1996). [CrossRef]
  14. B. C. Stuart, M. D. Feit, S. Herman, A. M. Rubenchik, B. W. Shore, and M. D. Perry, "Nanosecond-tofemtosecond laser-induced breakdown in dielectrics," Phys. Rev. B 53, 1749 (1996). [CrossRef]
  15. C. B. Schaffer, A. Brodeur, and E. Mazur, "Laser-induced breakdown and damage in bulk transparent materials induced by tightly-focused femtosecond laser pulses," Meas. Sci. Technol. 12, 1784 (2001). [CrossRef]
  16. E. N. Glezer, C. B. Schaffer, N. Nishimura, and E. Mazur, "Minimally disruptive laser-induced breakdown in water," Opt. Lett. 22, 1817 (1997). [CrossRef]
  17. A. G. Doukas, A. D. Zweig, J. K. Frisoli, R. Birngruber, and T. F. Deutsch, "Non-invasive determination of shock wave pressure generated by optical breakdown," Appl. Phys. B 53, 237 (1991). [CrossRef]
  18. T. Juhasz, G. A. Kastis, C. Suarez, Z. Bor, and W. E. Bron, "Time-resolved observations of shock waves and cavitation bubbles generated by femtosecond laser pulses in corneal tissue and water," Laser Surg. Med. 19, 23 (1996). [CrossRef]
  19. P. K. Kennedy, S. A. Boppart, D. X. Hammer, B. A. Rockwell, G. D. Noojin, and W. P. Roach, "A firstorder model for computation of laser-induced breakdown thresholds in ocular and aqueous media .2. Comparison to experiment," IEEE J. Quantum Electron. 31, 2250 (1995). [CrossRef]
  20. J. Noack, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and A. Vogel, "Influence of pulse duration on mechanical effects after laser-induced breakdown in water," J. Appl. Phys. 83, 7488 (1998). [CrossRef]
  21. A. Vogel, J. Noack, K. Nahen, D. Theisen, S. Busch, U. Parlitz, D. X. Hammer, G. D. Noojin, B. A. Rockwell, and R. Birngruber, "Energy balance of optical breakdown in water at nanosecond to femtosecond time scales," Appl. Phys. B 68, 271 (1999). [CrossRef]
  22. E. Abraham, K. Minoshima, and H. Matsumoto, "Femtosecond laser-induced breakdown in water: Timeresolved shadow imaging and two-color interferometric imaging," Opt. Commun. 176, 441 (2000). [CrossRef]
  23. A. Vogel, K. Nahen, D. Theisen, R. Birngruber, R. J. Thomas, and B. A. Rockwell, "Influence of optical aberrations on laser-induced plasma formation in water and their consequences for intraocular photodisruption," Appl. Opt. 38, 3636 (1999). [CrossRef]
  24. J. P. Fischer, T. Juhasz, and J. F. Bille, "Time resolved imaging of the surface ablation of soft tissue with ir picosecond laser pulses," Appl. Phys. A 64, 181 (1997). [CrossRef]
  25. A. Vogel, S. Busch, and U. Parlitz, "Shock wave emission and cavitation bubble generation by picosecond and nanosecond optical breakdown in water," J. Acoust. Soc. Amer. 100, 148 (1996). [CrossRef]
  26. J. G. Fujimoto, Ophthal. & Vis. Science 26, 1771 (1985).
  27. C. A. Puliafito and R. F. Steinert, IEEE J. Quantum Electron. 20, 1442 (1984). [CrossRef]
  28. L. Huang, J. P. Callan, E. N. Glezer, and E. Mazur, "Gaas under intense ultrafast excitation: Response of the dielectric function," Phys. Rev. Lett. 80, 185 (1998). [CrossRef]
  29. C. B. Schaffer, "Interaction of femtosecond laser pulses with transparent materials," Ph.D. thesis, Harvard University (2001).
  30. D. von der Linde and H. Schuler, "Breakdown threshold and plasma formation in femtosecond laser-solid interaction," J. Opt. Soc. Am. B 13, 216 (1996). [CrossRef]
  31. T. Juhasz, G. Djotyan, F. H. Loesel, R. M. Kurtz, C. Horvath, J. F. Bille, and G. Mourou, "Applications of femtosecond lasers in corneal surgery," Laser Phys. 10, 495 (2000).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

Supplementary Material


» Media 1: MOV (2438 KB)     

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited