OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 6 — Mar. 25, 2002
  • pp: 291–296

Nondestructive in situ thermoluminescence using CO2 laser heating

John L. Lawless, S. K. Lam, and D. Lo  »View Author Affiliations

Optics Express, Vol. 10, Issue 6, pp. 291-296 (2002)

View Full Text Article

Enhanced HTML    Acrobat PDF (93 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have obtained thermoluminescence glow curves nondestructively from large, solid, ceramic samples by laser spot heating. Although the samples are brittle, laser thermoluminescence glow curves could be obtained with no visible damage to the samples. The experimental glow curves match with theory. By contrast, conventional thermoluminescence measurements require small samples to be removed from a ceramic and placed in a thermoluminescence machine. Laser-induced thermoluminescence glow curves from LiF, silica, and porcelain are presented.

© 2002 Optical Society of America

OCIS Codes
(120.4290) Instrumentation, measurement, and metrology : Nondestructive testing
(160.2540) Materials : Fluorescent and luminescent materials

ToC Category:
Research Papers

Original Manuscript: February 21, 2002
Revised Manuscript: March 21, 2002
Published: March 25, 2002

John Lawless, S. Lam, and D. Lo, "Nondestructive in situ thermoluminescence using CO2 laser heating," Opt. Express 10, 291-296 (2002)

Sort:  Journal  |  Reset  


  1. M. J. Aitken, Thermoluminescence Dating (Academic Press, London, 1985).
  2. S. W. S. McKeever, Thermoluminescence of Solids (Cambridge University Press, Cambridge, 1985). [CrossRef]
  3. G. Kennedy and L. Knopff, Archeology 113, 147 (1960).
  4. E. A. Randall and M. H. F. Wilkins, �Phosphorescence and Electron Traps II� Proc. R. Soc. London Ser. A 184, 390 (1945). [CrossRef]
  5. G. F. J. Garlick and A. F. Gibson, �The Electron Trap Mechanism of Luminescence in Sulphide and Silicate Phosphors,� Proc. Roy. Soc. London A 60, 574 (1948).
  6. S. W. S. McKeever and R. Chen, �Luminescence Models,� Radiation Measurements 27, 625 (1997). [CrossRef]
  7. Y. Kirsh, �Kinetic Analysis of Thermoluminescence,� Phys. Stat. Sol. (a) 129, 15 (1992). [CrossRef]
  8. M. Martini and F. Meinardi, �Thermally Stimulated Luminescence: New Perspectives in The Study of Defects in Solids,� Rivista Del Nuovo Cimento 20, 1 (1997). [CrossRef]
  9. A. G. Mahmoud, D. E. Arafah, and H. Sharabati, �Characterization of Thermoluminescence-Glow Curves Resulting from Sensitized TLD-100,� J. Phys. D 31, 224 (1998). [CrossRef]
  10. S. W. S. McKeever, �5.5 Ev Optical-Absorption, Supralinearity, and Sensitization of Thermoluminescence in LiF TLD-100,� J. Appl. Phys. 68, 724 (1990). [CrossRef]
  11. S. W. S. McKeever and Y. S. Horowitz, �Charge Trapping Mechanisms and Microdosimetric Processes in Lithium-Fluoride,� Radiation Physics and Chemistry 36, 35 (1990).
  12. D. Yossian and Y. S. Horowitz, �Computerized Glow Curve Deconvolution Applied To The Analysis of The Kinetics of Peak 5 in LiF-Mg,Ti (TLD-100),� J. Phys. D 28, 1495 (1995). [CrossRef]
  13. A. T. Davidson, A. G. Kozakiewicz, D. J. Wilkinson, and J. D. Comins, �Defect Clusters and Thermoluminescence in LiF Crystals,� J. Appl. Phys. 86, 1410 (1999). [CrossRef]
  14. L. A. R. da Rosa and L. V. E. Caldas, �On The Thermoluminescence of LiF from 83 To 320 K,� J. Appl. Phys. 84, 6841 (1998). [CrossRef]
  15. F. Bogani et al., �A Comparative Study of The Thermoluminescent Response To Beta Irradiation of CVD Diamond and LiF Dosimeters,� Nuclear Instruments & Methods in Physics Research Section A 388, 427 (1997). [CrossRef]
  16. S. Mahajna and Y. S. Horowitz, �The Unified Interaction Model Applied To The Gamma Ray Induced Supralinearity and Sensitization of Peak 5 in LiF:Mg,Ti (TLD-100),� J. Phys. D 30, 2603 (1997) [CrossRef]
  17. J. Zimmerman, �Radiation Induced Increase of the 100C TL sensitivity of Fired Quartz,� J. Phys. C 4, 3265 (1971). [CrossRef]
  18. D. Stoneham and S. Stokes, �An Investigation of the Relationship between the 110C TL peak and optically stimulated luminescence in Sedimentary Quartz,� Nucl. Tracks Radiat. Meas. 23, 647 (1991).
  19. W. F. Hornyak, R. Chen, and A. Franklin, �Thermoluminescence Characteristics of The 375-Degrees-C Electron Trap in Quartz,� Phys. Rev. B 46, 8036 (1992). [CrossRef]
  20. M. J. Aitken and B. W. Smith, �Optical Dating: Recuperation after Bleaching,� Quarternary Sci. Rev. 7, 387 (1998). [CrossRef]
  21. A. Halperin, �The Nature of The Electron Traps in Quartz Associated with the Thermoluminescence Peaks in The Range 70-700K,� Annales De Chimie-Science Des Materiaux 22, 595 (1997).
  22. G. Chen and S. H. Li, �Studies of Quartz 110 Degrees C Thermoluminescence Peak Sensitivity Change and Its Relevance To Optically Stimulated Luminescence Dating,� J. Phys. D 33, 437 (2000). [CrossRef]
  23. H. M. Rendell et al., �Spectral-Analysis of Thermoluminescence in The Dating of Potassium Feldspars,� Physica Status Solidi A 138, 335 (1993). [CrossRef]
  24. J. R. Prescott, P. J. Fox, G. B. Robertson, and J. T. Hutton, �3-Dimensional Spectral Studies of The Bleaching of The Thermoluminescence of Feldspars,� Radiation Measurements 23, 367 (1994). [CrossRef]
  25. H. Y. Goksu, D. Stoneham, I. K. Bailiff, and G. Adamiec, �A New Technique in Retrospective Thermoluminescence Dosimetry: Pre-Dose Effect in The 230 Degrees C Thermoluminescence Glow Peak of Porcelain,� Appl. Radiat. Isot. 49, 99 (1998). [CrossRef]
  26. M. R. Krbetschek, J. Gotze, A. Dietrich, and T. Trautmann, �Spectral Information from Minerals Relevant for Luminescence Dating,� Radiation Measurements 27, 695 (1997). [CrossRef]
  27. J. Gasiot, P. Br�aunlich, and J. P. Fillard, �Laser Heating in Thermoluminescence Dosimetry,� J. Appl. Phys. 53, 5200 (1982). [CrossRef]
  28. A. Abtahim, P. Braunlich, P. Kelly, and J. Gasiot, �Laser Stimulated Thermoluminescence,� J. Appl. Phys. 58, 1626 (1985). [CrossRef]
  29. P. Kelly, A. Abtahi, and P. Braunlich, �Laser Stimulated Thermoluminescence II,� J. Appl. Phys. 61, 738 (1986). [CrossRef]
  30. K. Kearfott et al., �Numerical Simulation of a TLD Pulsed Laser-heating Scheme for Determination of Shallow Dose and Deep Dose in Low-LET Radiation Fields,� Appl. Radiat. Isot. 52, 1419 (2000). [CrossRef] [PubMed]
  31. M. Grupen and K. Kearfott, �Numerical Analysis of Infrared Laser Heating in Thermoluminescent Material Layers,� J. Appl. Phys. 64, 1044 (1988). [CrossRef]
  32. D. L. Fehl et al., �Characterization of a Two-Dimensional, Thermoluminescence, Dose-Mapping System: Uniformity, Reproducibility, and Calibrations,� Rev. Sci. Instrum. 65, 3243 (1994). [CrossRef]
  33. J. L. Lawless and D. Lo, �Thermoluminescence for Nonlinear Heating Profiles with Application to Laser Heated Emissions,� J. Appl. Phys. 89, 6145 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited