OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 10, Iss. 7 — Apr. 8, 2002
  • pp: 341–348

Effective area of photonic crystal fibers

Niels Asger Mortensen  »View Author Affiliations


Optics Express, Vol. 10, Issue 7, pp. 341-348 (2002)
http://dx.doi.org/10.1364/OE.10.000341


View Full Text Article

Enhanced HTML    Acrobat PDF (443 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We consider the effective area Aeff of photonic crystal fibers (PCFs) with a triangular air-hole lattice in the cladding. It is first of all an important quantity in the context of non-linearities, but it also has connections to leakage loss, macro-bending loss, and numerical aperture. Single-mode versus multi-mode operation in PCFs can also be studied by comparing effective areas of the different modes. We report extensive numerical studies of PCFs with varying air hole size. Our results can be scaled to a given pitch and thus provide a general map of the effective area. We also use the concept of effective area to calculate the “phase” boundary between the regimes with single-mode and multi-mode operation.

© 2002 Optical Society of America

OCIS Codes
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(230.3990) Optical devices : Micro-optical devices

ToC Category:
Research Papers

History
Original Manuscript: March 14, 2002
Revised Manuscript: April 2, 2002
Published: April 8, 2002

Citation
Niels Asger Mortensen, "Effective area of photonic crystal fibers," Opt. Express 10, 341-348 (2002)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-10-7-341


Sort:  Journal  |  Reset  

References

  1. Opt. Express 9, 674�779 (2001), <a href="http://www.opticsexpress.org/issue.cfm?issue_id=124">http://www.opticsexpress.org/issue.cfm?issue_id=124</a> [PubMed]
  2. J. Opt. A: Pure Appl. Opt. 3, S103�S207 (2001).
  3. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, �All-silica single-mode optical fiber with photonic crystal cladding,� Opt. Lett. 21, 1547�1549 (1996). [CrossRef] [PubMed]
  4. J. C. Knight, T. A. Birks, P. S. J. Russell, and D. M. Atkin, �All-silica single-mode optical fiber with photonic crystal cladding: errata,� Opt. Lett. 22, 484�485 (1997). [CrossRef] [PubMed]
  5. J. Broeng, D. Mogilevstev, S. E. Barkou, and A. Bjarklev, �Photonic crystal fibers: A new class of optical waveguides,� Opt. Fiber Technol. 5, 305�330 (1999). [CrossRef]
  6. G. P. Agrawal, Nonlinear Fiber Optics (Academic Press, San Diego, 2001).
  7. B. J. Eggleton, P. S.Westbrook, R. S.Windeler, S. Spalter, and T. A. Strasser, �Grating resonances in air-silica microstructured optical fibers,� Opt. Lett. 24, 1460�1462 (1999). [CrossRef]
  8. B. J. Eggleton, P. S. Westbrook, C. A. White, C. Kerbage, R. S. Windeler, G. L. Burdge, �Cladding-Mode-Resonances in Air-Silica Microcstructed Optical Fibers,� J. Lightwave Technol. 18, 1084�1100 (2000). [CrossRef]
  9. K. P. Hansen, J. R. Jensen, C. Jacobsen, H. R. Simonsen, J. Broeng, P. M. W. Skovgaard, A. Petersson, and A. Bjarklev, �Highly Nonlinear Photonic Crystal Fiber with Zero-Dispersion at 1.55 �m,� OFC 2002 Postdeadline Paper, (Optical Society of America, Washington, D.C., 2002) FA9-1.
  10. T. P. White, R. C. McPhedran, C. M. de Sterke, L. C. Botton, and M. J. Steel, �Confinement losses in microstructured optical fibers,� Opt. Lett. 26, 1660�1662 (2001). [CrossRef]
  11. K. Petermann, �Fundamental mode microbending loss in graded index and w fibers,� Opt. Quantum Electron. 9, 167�175 (1977). [CrossRef]
  12. T. S�rensen, N. A. Mortensen, J. Broeng, A. Bjarklev, T. P. Hansen, E. Knudsen, S. E. B. Libori, H. R. Simonsen, and J. R. Jensen, �Spectral macro-bending loss considerations on photonic crystal fibres,� IEE Proc.-Optoelectron., submitted.
  13. D. Marcuse, �Loss analysis of sigle-mode fiber splices,� Bell Syst. Tech. J. 56, 703 (1977).
  14. N. A. Mortensen, J. R. Jensen, P. M. W. Skovgaard, and J. Broeng, �Numerical aperture of single-mode photonic crystal fibers,� preprint, <a href="http://arxiv.org/abs/physics/0202073">http://arxiv.org/abs/physics/0202073</a>
  15. T. A. Birks, J. C. Knight, and P. S. J. Russell, �Endlessly single mode photonic crystal fibre,� Opt. Lett. 22, 961�963 (1997). [CrossRef] [PubMed]
  16. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic crystals: molding the flow of light (Princeton University Press, Princeton, 1995).
  17. A. K. Ghatak and K. Thyagarajan, Introduction to Fiber Optics (Cambridge University Press, Cambridge, 1998).
  18. J. Sakai and T. Kimura, �Bending loss of propagation modes in arbitrary-index profile optical fibers,� Appl. Opt. 17, 1499�1506 (1978). [CrossRef]
  19. J. Sakai, �Simplified bending loss formula for single-mode optical fibers,� Appl. Opt. 18, 951�952 (1979). [CrossRef]
  20. S. G. Johnson and J. D. Joannopoulos, �Block-iterative frequency-domain methods for Maxwell�s equations in a planewave basis,� Opt. Express 8, 173�190 (2000), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a> [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited