OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 10 — May. 19, 2003
  • pp: 1156–1165

Intrinsic eigenstate spectrum of planar multilayer stacks of two-dimensional photonic crystals

K. H. Dridi  »View Author Affiliations

Optics Express, Vol. 11, Issue 10, pp. 1156-1165 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (474 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A specific class of planar photonic crystals is investigated that provides a condensed matter combining the properties of planar multilayer stacks and two-dimensional photonic crystals in order to achieve large partial bandgaps in the eigenstate spectrum. These gaps are larger than the directionally dependent and polarization-dependent partial gaps of photonic crystal slabs. Full in-plane gaps are demonstrated numerically. Strong dispersion, waveguide confinement, high Q-cavities, and alternative photonic signal processing are feasible with these structures.

© 2003 Optical Society of America

OCIS Codes
(050.0050) Diffraction and gratings : Diffraction and gratings
(130.0130) Integrated optics : Integrated optics
(230.0230) Optical devices : Optical devices

ToC Category:
Research Papers

Original Manuscript: March 24, 2003
Revised Manuscript: May 7, 2003
Published: May 19, 2003

Kim Dridi, "Intrinsic eigenstate spectrum of planar multilayer stacks of two-dimensional photonic crystals," Opt. Express 11, 1156-1165 (2003)

Sort:  Journal  |  Reset  


  1. E. Yablonovitch, �??Inhibited spontaneous emission in solid-state physics and electronics,�?? Phys. Rev. Lett. 58, 2059-2062 (1987). [CrossRef] [PubMed]
  2. S. John, �??Strong localization of photons in certain disordered dielectric superlattices,�?? Phys. Rev. Lett. 58, 2486-2489 (1987). [CrossRef] [PubMed]
  3. J. D. Joannopoulos, R .D. Meade, and J. N. Winn, Photonic Crystals (Princeton U. Press, Princeton, N. J., 1995).
  4. S. Y. Lin, E. Chow, V. Hietala, P. R. Villeneuve, and J. D. Joannopoulos, �??Experimental demonstration of guiding and bending of electromagnetic waves in a photonic crystal,�?? Science 282, 274-276 (1998). [CrossRef] [PubMed]
  5. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, �??Demonstration of highly efficient waveguiding in a photonic crystal slab at the 1:5¡ mm wavelength,�?? Opt. Lett. 25, 1297-1299 (2000). [CrossRef]
  6. E. Chow, S. Y. Lin, J. R. Wendt, S. G. Johnson, and J. D. Joannopoulos, �??Quantitative analysis of bending efficiency in photonic-crystal waveguide bends at l= 1:55 mm wavelengths,�?? Opt. Lett. 26, 286-288 (2001). [CrossRef]
  7. S. Y. Lin, E. Chow, S. G. Johnson, and J. D. Joannopoulos, �??Direct measurement of the quality factor in a two-dimensional photonic-crystal microcavity,�?? Opt. Lett. 26, 1903-1905 (2001). [CrossRef]
  8. T. Søndergaard and K. H. Dridi, �??Energy flow in photonic crystal waveguides,�?? Phys. Rev. B. 61, 15688-15696 (2000). [CrossRef]
  9. K. M. Ho, C. T. Chan, and C. M. Soukoulis, �??Existence of a photonic gap in periodic dielectric structures,�?? Phys. Rev. Lett. 65, 3152-3155 (1990). [CrossRef] [PubMed]
  10. E. Yablonovitch, T. J. Gmitter, and K. M. Leung, �??Photonic band structure: the face-centered-cubic case employing nonspherical atoms,�?? Phys. Rev. Lett. 67, 2295-2298 (1991). [CrossRef] [PubMed]
  11. S. G. Johnson and J. D. Joannopoulos, �??Three-dimensionally periodic dielectric layered structure with omnidirectional photonic band gap,�?? Appl. Phys. Lett. 77, 3490-3492 (2000). [CrossRef]
  12. S. Fan, P. R. Villeneuve, R. D. Meade, and J. D. Joannopoulos, �??Design of three-dimensional photonic crystals at submicron lengthscales,�?? Appl. Phys. Lett. 65, 1466-1468 (1994). [CrossRef]
  13. S. Noda, K. Tomoda, N. Yamamoto, and A. Chutinan, �??Full three-dimensional photonic bandgap crystals at nearinfrared wavelengths,�?? Science 289, 604-606 (2000). [CrossRef] [PubMed]
  14. O. Toader and S. John, �??Proposed square spiral microfabrication architecture for large three-dimensional photonic band gap crystals,�?? Science 292, 1133-1135 (2001). [CrossRef] [PubMed]
  15. E. Kuramochi, M. Notomi, T. Tamamura, T. Kawashima, S. Kawakami, J. Takahashi, and C. Takahashi, �??Drilled alternating-layer structure for three-dimensional photonic crystals with a full band gap,�?? J. Vac. Sci. Technol. B 18, 3510-3513 (2000). [CrossRef]
  16. S. Kawakami, E. Kuramochi, M. Notomi, T. Kawashima, J. Takahashi, C. Takahashi, and T. Tamamura, �??A new fabrication technique for photonic crystals: nanolithography combined with alternating-layer deposition,�?? Opt. Quantum Electron. 34, 53-61 (2002). [CrossRef]
  17. S. G. Johnson, S. Fan, P. R. Villeneuve, J. D. Joannopoulos, and L. A. Kolodziejski, �??Guided modes in photonic crystal slabs,�?? Phys. Rev. B. 60, 5751-5758 (1999). [CrossRef]
  18. S. G. Johnson, P. R. Villeneuve, S. Fan, and J. D. Joannopoulos, �??Linear waveguides in photonic-crystal slabs,�?? Phys. Rev. B. 62, 8212-8222 (2000). [CrossRef]
  19. Y. Fink, J.N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, �??A dielectric omnidirectional reflector,�?? Science 282, 1679-1682 (1998). [CrossRef] [PubMed]
  20. J. N.Winn, Y. Fink, S. Fan, and J. D. Joannopoulos, �??Omnidirectional reflection from a one-dimensional photonic crystal,�?? Opt. Lett. 23, 1573-1575 (1998). [CrossRef]
  21. M. Deopura, C. K. Ullal, B. Temelkuran, and Y. Fink, �??Dielectric omnidirectional visible reflector,�?? Opt. Lett. 26, 1197-1199 (2001). [CrossRef]
  22. B. Temelkuran, E. L. Thomas, J. D. Joannopoulos, and Y. Fink, �??Low-loss infrared dielectric material system for broadband dual-range omnidirectional reflectivity,�?? Opt. Lett. 26, 1370-1372 (2001). [CrossRef]
  23. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, �??An all-dielectric coaxial waveguide,�?? Science 289, 415-419 (2000). [CrossRef] [PubMed]
  24. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. Engeness, M. Solja¡ci´c, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, �??Low-loss asymptotycally single-mode propagation in large-core OmniGuide fibers,�?? Opt. Express 9, 748 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748</a> [CrossRef] [PubMed]
  25. C. Hooijer, D. Lenstra, and A. Lagendijk, �??Mode density inside an omnidirectional mirror is heavily directional but not small,�?? Opt. Lett. 25, 1666-1668 (2000). [CrossRef]
  26. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a> [CrossRef] [PubMed]
  27. Z. Y. Li and Y. Xia, �??Omnidirectional absolute band gaps in two-dimensional photonic crystals,�?? Phys. Rev. B. 64, 153108-153112 (2001). [CrossRef]
  28. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, �??Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,�?? Nature 420, 650-653 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited