OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 10 — May. 19, 2003
  • pp: 1175–1196

Dispersion tailoring and compensation by modal interactions in OmniGuide fibers

Torkel D. Engeness, Mihai Ibanescu, Steven G. Johnson, Ori Weisberg, Maksim Skorobogatiy, Steven Jacobs, and Yoel Fink  »View Author Affiliations

Optics Express, Vol. 11, Issue 10, pp. 1175-1196 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (443 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We present a method for dispersion-tailoring of OmniGuide and other photonic band-gap guided fibers based on weak interactions (“anticrossings”) between the core-guided mode and a mode localized in an intentionally introduced defect of the crystal. Because the core mode can be guided in air and the defect mode in a much higher-index material, we are able to obtain dispersion parameters in excess of 500,000 ps/nm-km. Furthermore, because the dispersion is controlled entirely by geometric parameters and not by material dispersion, it is easily tunable by structural choices and fiber-drawing speed. So, for example, we demonstrate how the large dispersion can be made to coincide with a dispersion slope that matches commercial silica fibers to better than 1%, promising efficient compensation. Other parameters are shown to yield dispersion-free transmission in a hollow OmniGuide fiber that also maintains low losses and negligible nonlinearities, with a nondegenerate TE01 mode immune to polarization-mode dispersion (PMD). We present theoretical calculations for a chalcogenide-based material system that has recently been experimentally drawn.

© 2003 Optical Society of America

OCIS Codes
(060.2340) Fiber optics and optical communications : Fiber optics components
(230.1480) Optical devices : Bragg reflectors

ToC Category:
Research Papers

Original Manuscript: March 25, 2003
Revised Manuscript: April 25, 2003
Published: May 19, 2003

Torkel Engeness, Mihai Ibanescu, Steven Johnson, Ori Weisberg, Maksim Skorobogatiy, Steven Jacobs, and Yoel Fink, "Dispersion tailoring and compensation by modal interactions in OmniGuide fibers," Opt. Express 11, 1175-1196 (2003)

Sort:  Journal  |  Reset  


  1. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O. Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, J. D. Joannopoulos, and Y. Fink, �??Low-loss asymptotically single-mode propagation in large-core OmniGuide fibers,�?? Opt. Express 9, 748�??779 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-748</a> [CrossRef] [PubMed]
  2. P. Yeh, A. Yariv, and E. Marom, �??Theory of Bragg fiber,�?? J. Opt. Soc. Am. 68, 1196�??1201 (1978). [CrossRef]
  3. Y. Fink, J. N. Winn, S. Fan, C. Chen, J. Michel, J. D. Joannopoulos, and E. L. Thomas, �??A dielectric omnidirectional reflector,�?? Science 282, 1679�??1682 (1998). [CrossRef] [PubMed]
  4. J. A. Harrington, �??A review of IR transmitting, hollow waveguides,�?? Fiber Integr. Opt. 19, 211�??227 (2000). [CrossRef]
  5. A. Ferrando, E. Silvestre, P. Andrés, J. J. Miret and M. V. Andrés �??Designing the properties of dispersion-flattened photonic crystal fibers,�?? Opt. Express 9, 687�??697 (2001), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-687</a> [CrossRef] [PubMed]
  6. J. Marcou, F. Brechet, and P. Roy, �??Design of weakly guiding Bragg fibres for chromatic dispersion shifting towards short wavelengths,�?? J. Opt. A: Pure Appl. Opt. 3, S144�??S153 (2001). [CrossRef]
  7. G. Ouyang, Y. Xu, and A. Yariv, �??Theoretical study on dispersion compensation in air-core Bragg fibers,�?? Opt. Express 10, 899�??908 (2002), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-899">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-17-899</a> [CrossRef] [PubMed]
  8. M. Notomi, K. Yamada, A. Shinya, J. Takahashi, C. Takahashi, and I. Yokohama, �??Extremely large group-velocity dispersion of line-defect waveguides in photonic crystals,�?? Phys. Rev. Lett. 87, 253902 (2001). [CrossRef] [PubMed]
  9. T. A. Birks, D. Mogilevstev, J. Knight, and P. S. Russell, �??Dispersion compensation using single-material fibers,�?? IEEE Phot. Techn. Lett. 11, 674�??676 (1999). [CrossRef]
  10. S. O. Konorov, A. B. Fedotov, O. A. Kolevatova, E. A. Serebryannikov, D. A. Sidorov-Biryukov, J. M. Mikhailova, A. N. Naumov, V. I. Beloglazov, N. B. Skibina, L. A. Melnikov, A. V. Shcherbakov and A. M. Zheltikov �??Waveguide modes and dispersion properties of hollow-core photonic-crystal and aperiodic-cladding fibers,�?? Laser Physics 13, 148�??160 (2003)
  11. Y. Fink, D. J. Ripin, S. Fan, C. Chen, J. D. Joannopoulos, and E. L. Thomas, �??Guiding optical light in air using an all-dielectric structure,�?? J. Lightwave Tech. 17, 2039�??2041 (1999). [CrossRef]
  12. S. D. Hart, G. R. Maskaly, B. Temelkuran, P. H. Prideaux, J. D. Joannopoulos, and Y. Fink, �??External reflection from omnidirectional dielectric mirror fibers,�?? Science 296, 510�??513 (2002). [CrossRef] [PubMed]
  13. B. Temelkuran, S. D. Hart, G. Benoit, J. D. Joannopoulos, and Y. Fink, �??Wavelength-scalable hollow optical fibres with large photonic bandgaps for CO2 laser transmission,�?? Nature 420, 650�??653 (2002). [CrossRef] [PubMed]
  14. J. D. Joannopoulos, R. D. Meade, and J. N. Winn, Photonic Crystals: Molding the Flow of Light (Princeton U. Press, Princeton, N.J., 1995).
  15. P. Yeh, Optical Waves in Layered Media (Wiley, New York, 1988).
  16. R. Ramaswami and K. N. Sivarajan, Optical Networks: A Practical Perspective (Academic, London, 1998).
  17. L. G. Cohen, C. Lin, and W. G. French, �??Tailoring zero chromatic dispersion into the 1.5-1.6 mu-m low-loss spectral region of single mode fibers,�?? Electron. Lett. 15, 334�??335 (1979). [CrossRef]
  18. C. Lin, H. Kogelnik, and L. G. Cohen, �??Optical-pulse equalization of low-dispersion transmission in single-mode fibers in the 1.3-1.7-mu-m spectral region,�?? Opt. Lett. 5, 476�??478 (1980). [CrossRef] [PubMed]
  19. A. W. Snyder and J. D. Love, Optical Waveguide Theory (Chapman and Hall, London, 1983).
  20. S. G. Johnson and J. D. Joannopoulos, �??Block-iterative frequency-domain methods for Maxwell�??s equations in a planewave basis,�?? Opt. Express 8, 173�??190 (2001), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-8-3-173</a> [CrossRef] [PubMed]
  21. M. Skorobogatiy, M. Ibanescu, S. G. Johnson, O.Weisberg, T. D. Engeness, M. Soljacic, S. A. Jacobs, and Y. Fink, �??Analysis of general geometric scaling perturbations in a transmitting waveguide. The fundamental connection between polarization mode dispersion and group-velocity dispersion,�?? J. Opt. Soc. B 19, 2867�??2875 (2002). [CrossRef]
  22. S. G. Johnson, M. Ibanescu, M. Skorobogatiy, O.Weisberg, J. D. Joannopoulos, and Y. Fink, �??Perturbation theory for Maxwell�??s equations with shifting material boundaries,�?? Phys. Rev. E 65, 066611 (2002). [CrossRef]
  23. M. Skorobogatiy, S. A. Jacobs, S. G. Johnson, and Y. Fink, �??Geometric variations in high indexcontrast waveguides, coupled mode theory in curvilinear coordinates,�?? Opt. Express 10, 1227�??1243 (2002),<a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1227"> http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-21-1227</a> [CrossRef] [PubMed]
  24. M. Miyagi and S. Kawakami, �??Design theory of dielectric-coated circular metallic waveguides for infrared transmission,�?? J. Lightwave Tech. 2, 116�??126 (1984). [CrossRef]
  25. D. Gloge, �??Weakly guiding fibers,�?? Appl. Opt. 10, 2252-2258 (1971). [CrossRef] [PubMed]
  26. M. Ibanescu, S. G. Johnson, M. Soljacic, J. D. Joannopoulos, Y. Fink, O. Weisberg, T. D. Engeness, S. A. Jacobs, and M. Skorobogatiy, �??Analysis of mode structure in OmniGuide fibers,�?? Phys. Rev. E 67, 046608, (2003). 27. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt Saunders, Philadelphia, 1976). [CrossRef]
  27. N. W. Ashcroft and N. D. Mermin, Solid State Physics (Holt Saunders, Philadelphia, 1976).
  28. H. Haus and W.-P. Huang, �??Coupled-mode theory,�?? Proc. IEEE 79, 1505�??1518 (1991). [CrossRef]
  29. W.-P. Huang, �??Coupled-mode theory for optical waveguides: an overview,�?? JOSA A 11, 963�??983 (1994). [CrossRef]
  30. R. Kashyap, Fiber Bragg Gratings (Academic, San Diego, Calif., 1999).
  31. K. Thyagarajan, R. K. Varshney, P. Palai, A. K. Ghatak, and I. C. Goyal, �??A novel design of a dispersion compensating Fiber,�?? IEEE Phot. Techn. Lett. 8, 1510�??1512 (1996). [CrossRef]
  32. D. Moss, L. Lunardi, M. Lamont, G. Randall, and P. Colbourne, �??Tunable dispersion compensation at 10 Gb/s and 40 Gb/s using multicavity all-pass etalons,�?? in Optical Fiber Communication Conference (Optical Society of America, Washington, D.C., 2003), Vol. 1, paper TuD1.
  33. L. M. Lundardi, D.J. Moss, S. Chandrasekhar, L.L. Buhl, M. Lamont, S. McLaughlin, G. Randall, P. Colbourne, S. Kiran, and C.A. Hulse, �??Tunable dispersion compensation at 40 Gb/s using a multicavity etalon all-pass filter with NRZ, RZ and CS-RZ modulation,�?? J. Lightwave Tech. 20, 2136�??2144 (2002). [CrossRef]
  34. J. L. Auguste, R. Jindal, J. M. Blondy, M. Clapeau, J. Marcou, B. Dussardier, G. Monnom, D. B. Ostrowsky, B. P. Pal, and K. Thyagarajan, �??-1800ps/(nm-km) chromatic dispersion at 1.55 mm in dual concentric core fibre,�?? El. Lett. 36, 1689�??1691 (2000). [CrossRef]
  35. T. Kato, Y. Koyano, and M. Nishimura, �??Temperature dependence of chromatic dispersion in various types of optical fiber,�?? Opt. Lett. 25, 1156�??1158 (2000). [CrossRef]
  36. J. K. Chandalia, B. J. Eggleton, R. S. Windeler, S. G. Kosinski, X. Lu, and C. Xu, �??Adiabatic coupling in tapered air-silica microstructured optical fiber,�?? IEEE Phot. Tech. Lett. 13, 52�??54 (2001). [CrossRef]
  37. B. Z. Katsenelenbaum, L. Mercader del Río, M. Pereyaslavets, M. Sorolla Ayza, and M. Thumm, Theory of Nonuniform Waveguides: The Cross-Section Method (Inst. of Electrical Engineers, London, 1998). [CrossRef]
  38. M. Skorobogatiy, C. Anastassiou, O.Weisberg, T. D. Engeness, S. G. Johnson, S. A. Jacobs, and Y. Fink, submitted to J. Lightwave Technol.
  39. T. Kanamori, Y. Terunuma, S. Takahashi, and T. Miyashita, �??Chalcogenide glass-fibers for mid-infrared transmission,�?? J. Lightwave Technol. 2, 607�??613 (1984). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited