OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 10 — May. 19, 2003
  • pp: 1243–1251

Resonances in microstructured optical waveguides

Natalia M. Litchinitser, Steven C. Dunn, Brian Usner, Benjamin J. Eggleton, Thomas P. White, Ross C. McPhedran, and C. Martijn de Sterke  »View Author Affiliations


Optics Express, Vol. 11, Issue 10, pp. 1243-1251 (2003)
http://dx.doi.org/10.1364/OE.11.001243


View Full Text Article

Enhanced HTML    Acrobat PDF (439 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a simple physical model that predicts the optical properties of a class of microstructured waveguides consisting of high-index inclusions that surround a low-index core. On the basis of this model, it is found that a large regime exists where transmission minima are determined by the geometry of the individual high-index inclusions. The locations of these minima are found to be largely unaffected by the relative position of the inclusions. As a result of this insight the difficult problem of analyzing the properties of complex structures can be reduced to the much simpler problem of analyzing the properties of an individual high-index inclusion in the structure.

© 2003 Optical Society of America

OCIS Codes
(050.2230) Diffraction and gratings : Fabry-Perot
(060.0060) Fiber optics and optical communications : Fiber optics and optical communications
(230.3990) Optical devices : Micro-optical devices
(230.7370) Optical devices : Waveguides

ToC Category:
Research Papers

History
Original Manuscript: April 17, 2003
Revised Manuscript: May 11, 2003
Published: May 19, 2003

Citation
Natalia M. Litchinitser, Steven C. Dunn, Brian Usner, Benjamin J. Eggleton, Thomas P. White, Ross C. McPhedran, and C. Martijn de Sterke, "Resonances in microstructured optical waveguides," Opt. Express 11, 1243-1251 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-10-1243


Sort:  Journal  |  Reset  

References

  1. J. C. Knight, J. Broeng, T. A. Birks, and P. St. J. Russell, “Photonic band gap guidance in optical fibers,” Science 282, 1476-1478 (1998). [CrossRef] [PubMed]
  2. P. Yeh, A. Yariv, and E. Marom, “Theory of Bragg fiber,” J. Opt. Soc. Am. 68, 1196-1201 (1978). [CrossRef]
  3. M. Ibanescu, Y. Fink, S. Fan, E. L. Thomas, and J. D. Joannopoulos, “An all-dielectric coaxial waveguide,” Science 289, 415-419 (2000). [CrossRef] [PubMed]
  4. B. J. Eggleton, C. Kerbage, P. S. Westbrook, R. S. Windeler, and A. Hale, “Microstructured optical fiber devices,” Opt. Express 9, 698-713 (2001), <a href=" http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-9-13-698</a> [CrossRef] [PubMed]
  5. T. F. Krauss and R. M. De La Rue, “Photonic crystals at optical wavelengths - past, present and future,” Prog. Quantum Electron. 23, 51-96 (1999). [CrossRef]
  6. R. F. Cregan, B. J. Mangan, J. C. Knight, T. A. Birks, P. St. J. Russell, P. J. Roberts, and D. C. Allan, “Single-mode photonic band gap guidance of light in air,” Science 285, 1537-1539 (1999). [CrossRef] [PubMed]
  7. R. T. Bise, R. S. Windeler, K. S. Kranz, C. Kerbage, B. J. Eggleton, and D. J. Trevor, “Tunable photonic band gap fiber,” in Optical Fiber Communication Conference, Vol. 70 of OSA Trends in Optics and Photonics Series, Technical Digest, Postconference Edition (Optical Society of America, Washington, D.C., 2002), pp. 466-468.
  8. S. E. Barkou, J. Broeng, and A. Bjarklev, “Silica-air photonic crystal fiber design that permits waveguiding by a true photonic bandgap effect,” Opt. Lett. 24, 46 (1999). [CrossRef]
  9. R. Scarmozzino, A. Gopinath, R. Pregla, and S. Helfert, , “Numerical techniques for modeling guided-wave photonic devices,” IEEE J. Sel. Top. Quantum Electron. 6, 150-162 (2000). [CrossRef]
  10. T. P. White, B. T. Kuhlmey, R. C. McPhedran, D. Maystre, G. Renversez, C. Martijn de Sterke, and L. C. Botten, “Multipole method for microstructured optical fibers. I. Formulation,” J. Opt. Soc. Am. B 19, 2322- 2330 (2002). [CrossRef]
  11. B. T. Kuhlmey, T. P. White, G. Renversez, D. Maystre, L. C. Botten, C. Martijn de Sterke, and R. C. McPhedran, “Multipole method for microstructured optical fibers. II. Implementation and results,” J. Opt. Soc. Am. B 19, 2331-2340 (2002). [CrossRef]
  12. M. A. Duguay, Y. Kukubun, T. L. Koch, and L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2-Si multiplayer structures,” Appl. Phys. Lett. 49, 13-15 (1986). [CrossRef]
  13. T. Baba and Y. Kukubun, “Dispersion and radiation loss characteristics of antiresonant reflecting optical waveguides—numerical results and analytical expressions,” IEEE J. Quantum Electron. QE-28, 1689-1700 (1992). [CrossRef]
  14. N. M. Litchinitser, A. K. Abeeluck, C. Headley, and B. J. Eggleton, “Antiresonant reflecting photonic crystal optical waveguides,” Opt. Lett. 27, 1592-1594 (2002). [CrossRef]
  15. A. K. Abeeluck, N. M. Litchinitser, C. Headley, and B. J. Eggleton, “Analysis of spectral characteristics of photonic bandgap waveguides,” Opt. Express 10, 1320-1333 (2002), http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-23-1320 [CrossRef] [PubMed]
  16. M. M. Z. Kharadly and J. E. Lewis, “Properties of dielectric-tube waveguides,” Proc. IEE 116, 214-224 (1969).
  17. D. Marcuse and W. L. Mammel, “Tube waveguide for optical transmission,” Bell Syst. Tech. J. 52, 423-435 (1973).
  18. T. P. White, R. C. McPhedran, C. Martijn de Sterke, N. M. Litchinitser, and B. J. Eggleton, “Resonance and scattering in microstructured optical fibers,” Opt. Lett. 27, 1977-1979 (2002). [CrossRef]
  19. J. A. Stratton, Electromagnetic theory (McGraw-Hill, New York, 1941).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 

« Previous Article

OSA is a member of CrossRef.

CrossCheck Deposited