OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 13 — Jun. 30, 2003
  • pp: 1481–1489

Finite element characterization of chromatic dispersion in nonlinear holey fibers

Takeshi Fujisawa and Masanori Koshiba  »View Author Affiliations

Optics Express, Vol. 11, Issue 13, pp. 1481-1489 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (137 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Chromatic dispersion characteristics of nonlinear photonic crystal fibers are, for the first time to our knowledge, theoretically investigated. A self-consistent numerical approach based on the full-vector finite-element method in terms of all the components of electric fields is described for the steady-state analysis of axially-nonsymmetrical nonlinear optical fibers. Electric fields obtained with this approach can be directly utilized for evaluating nonlinear refractive index distributions. To eliminate nonphysical, spurious solutions and to accurately model curved boundaries of circular air holes, curvilinear hybrid edge/nodal elements are introduced. It is found from the numerical results that under high optical intensity, chromatic dispersion characteristics become different from those of the linear state due to optical Kerr-effect nonlinearity, especially in short wavelength region.

© 2003 Optical Society of America

OCIS Codes
(190.3270) Nonlinear optics : Kerr effect
(190.4370) Nonlinear optics : Nonlinear optics, fibers

ToC Category:
Research Papers

Original Manuscript: May 13, 2003
Revised Manuscript: June 3, 2003
Published: June 30, 2003

Takeshi Fujisawa and Masanori Koshiba, "Finite element characterization of chromatic dispersion in nonlinear holey fibers," Opt. Express 11, 1481-1489 (2003)

Sort:  Journal  |  Reset  


  1. K. Okamoto and E.A.J. Marcatili, �??Chromatic dispersion characteristics of fibers with optical Kerr-effect,�?? J. Lightwave Technol. 7, 1988-1994 (1989). [CrossRef]
  2. R.A. Sammut and C. Pask, �??Group velocity and dispersion in nonlinear-optical fibers,�?? Opt. Lett. 16, 70-72 (1991). [CrossRef] [PubMed]
  3. H.Y. Lin and H.-C. Chang, �??An efficient method for determining the chromatic dispersion characteristics of nonlinear single-mode optical fibers,�?? J. Lightwave Technol. 10, 1188-1195 (1992). [CrossRef]
  4. J.C. Knight, T.A. Birks, P.St.J. Russell, and D.M.Atkin, �??All-silica single-mode optical fiber with photonic crystal cladding,�?? Opt. Lett. 21, 1547-1549 (1996). [CrossRef] [PubMed]
  5. T.A. Birks, J.C. Knight, and P.St.J. Russell, �??Endlessly single-mode photonic crystal fiber,�?? Opt. Lett. 22, 961-963 (1997). [CrossRef] [PubMed]
  6. J.C. Knight, T.A. Birks, R.F. Cregan, P.St.J. Russell, and J.-P. de Sandro, �??Large mode area photonic crystal fiber,�?? Electron. Lett. 34, 1347-1348 (1998). [CrossRef]
  7. N.G.R. Broderick, T.M. Monro, P.J. Bennett, and D.J. Richardson, �??Nonlinearity in holey optical fibers : measurement and future opportunities,�?? Opt. Lett. 24, 1395-1397 (1999). [CrossRef]
  8. M.J. Gander, R. McBride, J.D.C. Jones, D. Mogilevtsev, T.A. Birks, J.C. Knight, and P.St. J. Russell, �??Experimental measurement of group velocity in photonic crystal fiber,�?? Electron. Lett. 35, 63-64 (1999). [CrossRef]
  9. M.J. Gander, R. McBride, J.D.C. Jones, T.A. Birks, J.C. Knight, P.St.J. Russell, P.M. Blanchard, J.G. Burnett, and A.H. Greenaway, �??Measurement of the wavelength dependence of beam divergence for photonic crystal fiber,�?? Opt. Lett. 24, 1017-1019 (1999). [CrossRef]
  10. W.J. Wadsworth, J.C. Knight, A. Ortigosa-Blanch, J. Arriaga, E. Silvestre, and P.St.J. Russell, �??Soliton effects in photonic crystal fibres at 850 nm,�?? Electron. Lett. 36, 53-55 (2000). [CrossRef]
  11. W.J. Wadsworth, A. Ortigosa-Blanch, J.C. Knight, T.A. Birks, T.-P. Martin Man, and P.St.J. Russell, �??Supercontinuum generation in photonic crystal fibers and optical fiber tapers: a novel light source,�?? J. Opt. Soc. Am. B 19, 2148-2155 (2002). [CrossRef]
  12. A.W. Snyder, Y. Chen, L. Poladian, and D.J. Mitchell, �??Fundamental mode of highly nonlinear fibers,�?? Electron. Lett. 26, 643-644 (1990). [CrossRef]
  13. R.A. Sammut and C. Pask, �??Variational approach to nonlinear waveguides-gaussian approximations,�?? Electron. Lett. 26, 1131-1132 (1990). [CrossRef]
  14. R.A. Sammut and C. Pask, �??Gaussian and equivalent-step-index approximations for nonlinear waveguides,�?? J. Opt. Soc. Am. B 8, 395-402 (1991). [CrossRef]
  15. Y. Chen, �??Nonlinear fibers with arbitrary nonlinearity,�?? J. Opt. Soc. Am. B 8, 2338-2341 (1991). [CrossRef]
  16. M.J. Holmes, D.M. Spirit, and F.P. Payne, �??New gaussian-based approximation for modeling non-linear effects in optical fibers,�?? J. Lightwave Technol. 12, 193-201 (1994). [CrossRef]
  17. F. Brechet, J. Marcou, D. Pagnoux, and P. Roy, �??Complete analysis of the characteristics of propagation into photonic crystal fibers,�?? Opt. Fiber Technol. 6, 181- (2000). [CrossRef]
  18. M. Koshiba and K. Saitoh, �??Numerical verification of degeneracy in hexagonal photonic crystal fibers,�?? IEEE Photon. Technol. Lett. 13, 1313-1315 (2001). [CrossRef]
  19. M. Koshiba, �??Full-vector analysis of photonic crystal fibers using the finite element method,�?? IEICE Trans. Electron. E85-C, 881-888 (2002).
  20. K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on a finite element scheme: application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933 (2002). [CrossRef]
  21. A. Cucinotta, S. Selleri, L. Vincetti, and M. Zoboli, �??Holey fiber analysis through the finite element method,�?? IEEE Photon. Technol. Lett. 14, 1530-1532 (2002). [CrossRef]
  22. K. Hayata and M. Koshiba, �??Full vectorial analysis of nonlinear-optical waveguides,�?? J. Opt. Soc. Am. B 5, 2494-2501 (1988). [CrossRef]
  23. R.D. Ettinger, F.A. Fernandez, B.M.A. Rahman, and J.B. Davies, �??Vector finite element solution of saturable nonlinear strip-loaded optical waveguides,�?? IEEE Photon. Technol. Lett. 3, 147-149 (1991). [CrossRef]
  24. X.H. Wang and G.K. Cambrell, �??Full vectorial simulation of bistability phenomena in nonlinear-optical channel waveguides,�?? J. Opt. Soc. Am. B 10, 1090-1095 (1993). [CrossRef]
  25. X.H. Wang and G.K. Cambrell, �??Simulation of strong nonlinear effects in optical waveguides,�?? J. Opt. Soc. Am. B 10, 2048-2055 (1993). [CrossRef]
  26. S. Selleri and M. Zoboli, �??An improved finite element method formulation for the analysis of nonlinear anisotropic dielectric waveguides,�?? IEEE Trans. Micorwave Theory Tech. 43, 887-892 (1995). [CrossRef]
  27. M. Zoboli, F.Di Pasquale, and S. Selleri, �??Full-vectorial and scalar solutions of nonlinear optical fibers,�?? Opt. Commun. 97, 11-15 (1993). [CrossRef]
  28. X.H. Wang and G.K. Cambrell, �??Vectorial simulation and power-parameter characterization of nonlinear planar optical waveguides,�?? J. Opt. Soc. Am. B 12, 265-274 (1995). [CrossRef]
  29. S.S.A. Obayya, B.M.A. Rahman, K.T.V. Grattan, and H.A. El-Mikati, �??Full-vectorial finite-element solution of nonlinear bistable optical waveguides,�?? IEEE J. Quantum Electron. 38, 1120-1125 (2002). [CrossRef]
  30. M. Koshiba and Y. Tsuji, �??Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,�?? J. Lightwave Technol. 18, 737-743 (2000). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited