OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 13 — Jun. 30, 2003
  • pp: 1490–1496

Coupled-mode theory and propagation losses in photonic crystal waveguides

S. Olivier, H. Benisty, C. Weisbuch, C. J. M. Smith, T. F. Krauss, and R. Houdré  »View Author Affiliations


Optics Express, Vol. 11, Issue 13, pp. 1490-1496 (2003)
http://dx.doi.org/10.1364/OE.11.001490


View Full Text Article

Enhanced HTML    Acrobat PDF (333 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Mode coupling phenomena, manifested by transmission “mini-stopbands”, occur in two-dimensional photonic crystal channel waveguides. The huge difference in the group velocities of the coupled modes is a new feature with respect to the classical Bragg reflection occurring, e.g., in distributed feedback lasers. We show that an adequate ansatz of the classical coupled-mode theory remarkably well accounts for this new phenomenon. The fit of experimental transmission data from GaAs-based photonic crystal waveguides then leads to an accurate determination of the propagation losses of both fundamental and higher, low-group-velocity modes.

© 2003 Optical Society of America

OCIS Codes
(130.0130) Integrated optics : Integrated optics
(230.7380) Optical devices : Waveguides, channeled

ToC Category:
Research Papers

History
Original Manuscript: May 13, 2003
Revised Manuscript: June 11, 2003
Published: June 30, 2003

Citation
Segolene Olivier, H. Benisty, C. Weisbuch, C. Smith, T. Krauss, and R. Houdre, "Coupled-mode theory and propagation losses in photonic crystal waveguides," Opt. Express 11, 1490-1496 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-13-1490


Sort:  Journal  |  Reset  

References

  1. S. Olivier, M. Rattier, H. Benisty, C. Weisbuch, C. J. M. Smith, R. M. De La Rue, T. F. Krauss, U. Oesterle and R. Houdré, �??Mini stopbands of a one dimensional system: the channel waveguide in a two-dimensional photonic crystal,�?? Phys. Rev. B 63, 113311 (2001). [CrossRef]
  2. S. Olivier, H. Benisty, C. J. M. Smith, M. Rattier, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, �??Transmission properties of two-dimensional photonic crystal channel waveguides,�?? Opt. Quantum Electron. 34, 171-181 (2002). [CrossRef]
  3. C. J. M. Smith, R. M. De La Rue, M. Rattier, S. Olivier, H. Benisty, C. Weisbuch, T. F. Krauss, R. Houdré and U. Oesterle, �??Coupled guide and cavity in a two-dimensional photonic crystal,�?? App. Phys. Lett. 78, 1487-1489 (2001). [CrossRef]
  4. H. Benisty, �??Modal analysis of optical guides with two-dimensional photonic band-gap boundaries,�?? J. Appl. Phys. 79, 7483-7492 (1996). [CrossRef]
  5. M. Qiu, �??Effective index method for heterostructure-slab-waveguide-based two-dimensional photonic crystals,�?? Appl. Phys. Lett. 81, 1163-1165 (2002). [CrossRef]
  6. H. Kogelnick and C.V. Shank, �??Coupled wave theory of distributed feedback lasers,�?? J. Appl. Phys. 43, 2328 (1972).
  7. See for example Tamir, Guided Wave Optoelectronics, Springer Verlag, Berlin, chaps 2,6 (1988).
  8. P. Ferrand, R. Romestain and J.C. Vial, �??Photonic band-gap properties of a porous silicon periodic planar waveguide,�?? Phys. Rev. B 63, 115106 (2001). [CrossRef]
  9. E. Peral and A. Yariv, �??Supermodes of grating-coupled multimode waveguides and application to mode conversion between copropagating modes mediated by backward Bragg scattering,�?? J. Lightwave Tech. 17, 942-947 (1999). [CrossRef]
  10. D. Labilloy, H. Benisty, C. Weisbuch, T.F. Krauss, R. Houdré and U. Oesterle, �??Use of guided spontaneous emission of a semiconductor to probe the optical properties of two-dimensionam photonic crystals,�?? Appl. Phys. Lett. 71, 738-740 (1997). [CrossRef]
  11. E. Schwoob, H. Benisty, S. Olivier, C. Weisbuch, C.J.M Smith, T.F. Krauss, R. Houdre and U. Oesterle, �??Two-mode fringes in planar photonic crystal waveguides with constrictions: a sensitive probe to propagation losses,�?? J. Opt. Soc. Am. B 19, 2403-2412 (2002). [CrossRef]
  12. M. Qiu, B. Jaskorzynska, M. Swillo and H. Benisty, �??Time-domain 2D modeling of slab-waveguide-based photonic-crystal devices in the presence of radiation losses,�?? Microwave and Opt. Tech. Lett. 34, 387-393 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1. Fig. 2. Fig. 3.
 
Fig. 4.
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited