OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 15 — Jul. 28, 2003
  • pp: 1714–1723

Polarization-Assisted Transverse and Axial Optical Superresolution

Andrew I. Whiting, Ayman F. Abouraddy, Bahaa E. A. Saleh, Malvin C. Teich, and John T. Fourkas  »View Author Affiliations

Optics Express, Vol. 11, Issue 15, pp. 1714-1723 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (214 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The superposition of two coaxial Gaussian beams with offset foci and orthogonal linear polarizations can be used to produce a right- or left- circular polarization component with a focal spot of volume smaller than that of the Gaussian beam. This polarization-assisted axial and transverse superresolution effect is attributed to the differential Gouy phase shift within the focal region or to the non-Gaussian annular distribution of the circularly-polarized components in the far field.

© 2003 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(180.6900) Microscopy : Three-dimensional microscopy

ToC Category:
Research Papers

Original Manuscript: June 6, 2003
Revised Manuscript: July 2, 2003
Published: July 28, 2003

Andrew Whiting, Ayman Abouraddy, Bahaa Saleh, Malvin Teich, and John Fourkas, "Polarization-assisted transverse and axial optical superresolution," Opt. Express 11, 1714-1723 (2003)

Sort:  Journal  |  Reset  


  1. T. R. M. Sales, �??Smallest focal spot�?? Phys. Rev. Lett. 81, 3844-3847 (1998). [CrossRef]
  2. W. Lukosz, �??Optical systems with resolving powers exceeding the classical limit I�?? J. Opt. Soc. Am. 56, 1463-1472 (1966). [CrossRef]
  3. W. Lukosz, �??Optical systems with resolving powers exceeding the classical limit II�?? J. Opt. Soc. Am. 57, 932-941 (1967). [CrossRef]
  4. D. Mendlovic, I. Kiryuschev, Z. Zalevsky, A. W. Lohmann, and D. Farkas, �??Two- dimensional superresolution optical system for temporally restricted objects�?? Appl. Optics 36, 6687-6691 (1997). [CrossRef]
  5. D. Mendlovic, D. Farkas, Z. Zalevsky, and A. W. Lohmann, �??High-frequency enhancement by an optical system for superresolution of temporally restricted objects�?? Opt. Lett. 23, 801-803 (1998). [CrossRef]
  6. A. I. Kartashev, �??Optical systems with enhanced resolving power�?? Opt. Spectrosc. (USSR) 9, 204-206 (1960).
  7. W. Gartner and A. W. Lohmann, �??An experiment going beyond Abbe�??s limit of Diffraction�?? Z. Phys. 174, 18-21 (1963).
  8. D. Mendlovic and A. W. Lohmann, �??Space-bandwidth product adaptation and its application to superresolution: Fundamentals�?? J. Opt. Soc. Am. A 14, 558-562 (1997). [CrossRef]
  9. D. Mendlovic, A. W. Lohmann, and Z. Zalevsky, �??Space-bandwidth product adaptation and its application to superresolution: Examples�?? J. Opt. Soc. Am. A 14, 563-567 (1997). [CrossRef]
  10. Z. Zalevsky, D. Mendlovic, and A. W. Lohmann, �??Understanding superresolution in Wigner space�?? J. Opt. Soc. Am. A 17, 2422-2430 (2000). [CrossRef]
  11. W. Denk, J. H. Strickler, andW.Webb, �??Two-photon laser scanning fluorescence microscopy�?? Science 248, 73-76 (1990). [CrossRef] [PubMed]
  12. S. Kawata, H. B. Sun, T. Tanaka, and K. Takada, �??Finer features for functional microdevices�?? Nature 412, 697-698 (2001). [CrossRef] [PubMed]
  13. S. W. Hell and J. Wichmann, �??Breaking the diffraction resolution limit by stimulated emission: stimulatedemission- depletion fluorescence microscopy�?? Opt. Lett. 19, 780-782 (1994). [CrossRef] [PubMed]
  14. M. Dyba and S. W. Hell, �??Focal spots of size ë/23 open up far-field fluorescence microscopy at 33 nm axial resolution�?? Phys. Rev. Lett. 88, 163901 (2002). [CrossRef] [PubMed]
  15. T. Brixner and G. Gerber �??Femtosecond polarization pulse shaping�?? Opt. Lett. 26, 557-559 (2001). [CrossRef]
  16. B. E. A. Saleh and M. C. Teich, Fundamentals of Photonics (Wiley, New York, 1991). [CrossRef]
  17. M. Gouy, �??Sur la propagation anomale des ondes,�?? Comp. Rend. Acad. Sci. 111, 33-40 (1890). [CrossRef]
  18. J. J. Stamnes, Waves in focal regions (Adam Hilger, Bristol and Boston, 1986).
  19. C. J. Sheppard and Z. S. Hegesdus, �??Axial behavior of pupil-plane filters�?? J. Opt. Soc. Am. A 5, 643-647 (1988). [CrossRef]
  20. M. Martinez-Corral, P. Andres, J. Ojeda-Castaneda, and G. Saavedra, �??Tunable axial superresolution by annular binary filters - application to confocal microscopy�?? Opt. Commun. 119, 491-498 (1995). [CrossRef]
  21. T. R. M. Sales and G. M. Morris, �??Axial superresolution with phase-only pupil filters�?? Opt. Commun. 156, 227-230 (1998). [CrossRef]
  22. Y. Li, �??Focal shift and focal switch in dual-focus systems�?? J. Opt. Soc. Am. A 14, 1297-1304 (1997). [CrossRef]
  23. B. Bailey, D. Farkas, D. Taylor, and F. Lanni, �??Enhancement of axial resolution in fluorescence microscopy by standing-wave excitation,�?? Nature 366, 44-48 (1993) [CrossRef] [PubMed]
  24. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, UK, 7th edition, 1999).
  25. S. Feng and H. Winful, �??Physical origin of the Gouy phase shift�?? Opt. Lett. 26, 485-487 (2001).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited