OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 15 — Jul. 28, 2003
  • pp: 1746–1756

Structural dependence of effective area and mode field diameter for holey fibers

M. Koshiba and K. Saitoh  »View Author Affiliations

Optics Express, Vol. 11, Issue 15, pp. 1746-1756 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (174 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A rigorous full-vector finite element method is effectively applied to evaluating the effective area Aeff and the mode field diameter (MFD) of holey fibers (HFs) with finite cross sections. The effective modal spot size (a half of MFD), weff , is defined with the help of the second moment of the optical intensity distribution. The influence of hole diameter, hole pitch, operating wavelength, and number of rings of air holes on Aeff and weff is investigated in detail. As a result, it is shown that Aeff and weff are almost independent of the number of hole rings and that the relation Aeffweff2, which is frequently utilized in the conventional optical fibers, does not always hold, especially in smaller air-filling fraction and/or longer wavelength regions. In addition, we find that for HFs with large air holes operating at longer wavelengths, the mode profiles of the two linearly polarized fundamental modes are significantly different from each other, even though they are degenerate. Using the values of Aeff and weff obtained here, the beam divergence and the nonlinear phase shift are calculated and are compared with the earlier experimental results.

© 2003 Optical Society of America

OCIS Codes
(060.2270) Fiber optics and optical communications : Fiber characterization
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2430) Fiber optics and optical communications : Fibers, single-mode

ToC Category:
Research Papers

Original Manuscript: June 26, 2003
Revised Manuscript: July 16, 2003
Published: July 28, 2003

M. Koshiba and K. Saitoh, "Structural dependence of effective area and mode field diameter for holey fibers," Opt. Express 11, 1746-1756 (2003)

Sort:  Journal  |  Reset  


  1. J. Broeng, D. Mogilevstev, S.E. Barkou, and A. Bjarklev, �??Photonic crystal fibers: A new class of optical waveguides,�?? Opt. Fiber Technol. 5, 305-330, (1999). [CrossRef]
  2. T.A. Birks, J.C. Knight, B.J. Mangan, and P.St.J. Russell, �??Photonic crystal fibers: An endless variety,�?? IEICE Trans. Electron. E84-C, 585-592, (2001).
  3. T.M. Monro, D.J. Richardson, N.G.R. Broderick, and P.J. Bennett, �??Modeling large air fraction holey optical fibers,�?? J. Lightwave Technol. 18, 50-56, (2000). [CrossRef]
  4. N.A. Mortensen, �??Effective area of photonic crystal fibers,�?? Opt. Express 10, 341-348, (2002), <a href="http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341">http://www.opticsexpress.org/abstract.cfm?URI=OPEX-10-7-341</a> [CrossRef] [PubMed]
  5. T.M. Monro, V. Finazzi, W. Belardi, K.M. Kiang, J.H. Lee, and D.J. Richardson, �??Highly nonlinear holey optical fibers: design, manufacture and device applications,�?? Proc. European Conf. Opt. Commun., Symposium 1.5. (2002).
  6. M. Koshiba and Y. Tsuji,�??Curvilinear hybrid edge/nodal elements with triangular shape for guided-wave problems,�?? J. Lightwave Technol. 18, 737-743, (2000). [CrossRef]
  7. K. Saitoh and M. Koshiba, �??Full-vectorial finite element beam propagation method with perfectly matched layers for anisotropic optical waveguides,�?? J. Lightwave Technol. 19, 405-413, (2001). [CrossRef]
  8. K. Saitoh and M. Koshiba, �??Full-vectorial imaginary-distance beam propagation method based on finite element scheme: Application to photonic crystal fibers,�?? IEEE J. Quantum Electron. 38, 927-933, (2002). [CrossRef]
  9. T.P. White, R.C. McPhedran, C.M. de Sterke, L.C. Botten, and M.J. Steel, �??Confinement losses in microstructured optical fibers,�?? Opt. Lett. 26, 1660-1662, (2001). [CrossRef]
  10. V. Finazzi, T.M. Monro, and D.J. Richardson, �??Confinement loss in highly nonlinear holey optical fibers,�?? Proc. Optical Fiber Commun. Conf. ThS4. (2002).
  11. M.J. Gander, R. McBride, J.D.C. Jones, T.A. Birks, J.C. Knight, P.St.J. Russell, P.M. Blanchard, J.G. Burnett, and A.H. Greenaway, �??Measurement of the wavelength dependence of beam divergence for photonic crystal fiber,�?? Opt. Lett. 24, 1017-1019, (1999). [CrossRef]
  12. N.A. Mortensen, J.R. Folken, P.M.W. Skovgaard, and J. Broeng, �??Numerical aperture of single-mode photonic crystal fibers,�?? IEEE Photon. Technol. Lett. 14, 1094-1096, (2002). [CrossRef]
  13. J.H. Lee, P.C. Teh, Z. Yusoff, M. Ibsen, W. Belardi, T.M. Monro, and D.J. Richardson, �??A holey fiberbased nonlinear thresholding devices for optical CDMA receiver performance enhancement,�?? IEEE Photon. Technol. Lett. 14, 876-878, (2002). [CrossRef]
  14. J.W.H. Liu, �??The multifrontal method for sparse matrix solutions: theory and practice,�?? SIAM Rev. 34, 82- 109, (1992). [CrossRef]
  15. G. Agrawal, Nonlinear Fiber Optics, Academic Press (San Diego, CA), 2dn Edition (1995).
  16. K. Petermann, �??Constraints for fundamental-mode spot size for broadband dispersion-compensated singlemode fibers,�?? Electron. Lett. 19, 712-714, (1983). [CrossRef]
  17. M.J. Steel, T.P. White, C. Martijn de Sterke, R.C. McPhedran, and L.C. Botten, �??Symmetry and degeneracy in microstructured optical fibers,�?? Opt. Lett. 26, 488-490, (2001). [CrossRef]
  18. M. Koshiba and K. Saitoh, �??Numerical verification of degeneracy in hexagonal photonic crystal fibers,�?? IEEE Photon. Technol. Lett. 13, 1313-1315, (2001). [CrossRef]
  19. K. Hayata, M. Koshiba, and M. Suzuki, �??Modal spot size of axially nonsymmetrical fibers,�?? Electron. Lett. 22, 127-129, (1986). [CrossRef]
  20. M. Koshiba and K. Saitoh, �??Polarization-dependent losses in actual holey fibers,�?? IEEE Photon. Technol. Lett. 15, 691-693, (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited