OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 16 — Aug. 11, 2003
  • pp: 1827–1834

Heating and phase-space decompression of evanescent-wave cooled atoms by multiple photon reabsorption

A. Shevchenko, M. Kaivola, and J. Javanainen  »View Author Affiliations

Optics Express, Vol. 11, Issue 16, pp. 1827-1834 (2003)

View Full Text Article

Enhanced HTML    Acrobat PDF (97 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We show that multiple reabsorption of resonance-frequency photons in a cloud of evanescent-wave cooled atoms can have a significant influence on the cooling efficiency and maximum value of the atomic phase-space density.

© 2003 Optical Society of America

OCIS Codes
(020.1670) Atomic and molecular physics : Coherent optical effects
(020.7010) Atomic and molecular physics : Laser trapping

ToC Category:
Research Papers

Original Manuscript: May 20, 2003
Revised Manuscript: June 28, 2003
Published: August 11, 2003

A. Shevchenko, M. Kaivola, and J. Javanainen, "Heating and phase-space decompression of evanescent-wave cooled atoms by multiple photon reabsorption," Opt. Express 11, 1827-1834 (2003)

Sort:  Journal  |  Reset  


  1. J. Söding, R. Grimm, and Yu. B. Ovchinnikov, �??Gravitational laser trap for atoms with evanescent-wave cooling,�?? Opt. Commun. 119, 652-662 (1995). [CrossRef]
  2. Yu. B. Ovchinnikov, I. Manek, and R. Grimm, �??Surface Trap for Cs atoms based on Evanescent-Wave Cooling,�?? Phys. Rev. Lett. 79, 2225-2228 (1997). [CrossRef]
  3. M. Hammes, D. Rychtarik, V. Druzhinina, U. Moslener, I. Manek-Hönninger, and R. Grimm, �??Optical and evaporative cooling of caesium atoms in the gravito-optical surface trap,�?? J. Mod. Opt. 47, 2755-2767 (2000).
  4. P. Desbiolles, M. Arndt, P. Szriftgiser, and J. Dalibard, �??Elementary Sisyphus process close to a dielectric surface,�??Phys. Rev. A 54, 4292-4198 (1996). [CrossRef] [PubMed]
  5. R. J. C. Spreeuw, D. Voigt, B. T. Wolschrijn, and H. B. van Linden den Heuvell, �??Creating a low-dimensional quantum gas using dark states in an inelastic evanescent-wave mirror,�?? Phys. Rev. A 61, 053604-1-7 (2000). [CrossRef]
  6. M. Hammes, D. Rychtarik, H.-C. Nägel, and R. Grimm, �??Cold-atom gas at very high densities in an optical surface microtrap,�?? Phys. Rev. A 66, 051401-1-4 (2002). [CrossRef]
  7. M. Hammes, D. Rychtarik, B. Engeser, H.-C. Nägel, and R. Grimm, �??Evanescent-Wave Trapping and Evaporative Cooling of an Atomic Gas at the Crossover to Two Dimensions,�?? Phys. Rev. Lett. 90, 173001-1-4 (2003). [CrossRef] [PubMed]
  8. H. Gauck, M. Hartl, D. Schneble, H. Schnitzler, T. Pfau, and J. Mlynek, �??Quasi-2D Gas of Laser Cooled Atoms in a Planar Matter Waveguide,�?? Phys. Rev. Lett. 81, 5298-5301 (1998). [CrossRef]
  9. P. Domokos and H. Ritsch, �??Efficient laoding and cooling in a dynamic optical evanescent-wave microtrap,�??Europhys. Lett. 54, 306-312 (2001). [CrossRef]
  10. M. Gorliki, S. Feron, V. Lorent, and M. Dukloy, �??Interferometric approaches to atom-surface van der Waals interactions in atomic mirrors,�?? Phys. Rev. A 61, 013603-1-9 (2000).
  11. C. Henkel, K. Mølmer, R. Kaiser, N. Vansteenkiste, C. I. Westbrook, and A. Aspect, �??Diffuse atomic reflection at a rough mirror,�?? Phys. Rev. A 55, 1160-1178 (1997). [CrossRef]
  12. V. Savalli, D. Stevens, J. Estève, P. D. Featonby, V. Josse, N. Westbrook, C. I. Westbrook, and A. Aspect, �??Specular Reflection of Matter Waves from a Rough Mirror,�?? Phys. Rev. Lett. 88, 250404-1-4 (1997).
  13. L. Khaykovich, N. Davidson, �??Adiabatic focusing of cold atoms in a blue-detuned laser standing wave,�?? Appl. Phys. B 70, 683-688 (2000). [CrossRef]
  14. S. Meneghini, V. I. Savichev, K. A. H. van Leeuwen, W. P. Schleich, �??Atomic focusing and near field imaging: A combination for producing small-period nanostructures,�?? Appl. Phys. B 70, 675-682 (2000). [CrossRef]
  15. A. Lenef, T. D. Hammond, E. T. Smith, M. S. Chapman, R. A. Rubenstein, and D. E. Pritchard, �??Rotation Sensing with an Atom Interferometer,�?? Phys. Rev. Lett 78, 760-763 (1997). [CrossRef]
  16. M. �?zcan, �??Influence of electric potentials on atom interferometers: Increased rotation sensitivity,�?? J. Appl. Phys. 83, 6185-6186 (1998). [CrossRef]
  17. A. Peters, K. Y. Chung, and S. Chu, �??Measurement of gravitational acceleration by dropping atoms,�?? Nature 400, 849-852 (1999). [CrossRef]
  18. T. Calarco, E. A. Hinds, D. Jaksch, J. Schmiedmayer, J. I. Cirac, and P. Zoller, �??Quantum gates with neutral atoms: Controlling colisional interactions in time-dependent traps,�?? Phys. Rev. A 61, 022304-1-11 (2000). [CrossRef]
  19. M. D. Lukin, M. Fleischhauer, and R. Cote, �??Dipole blockade and Quantum Information Processing in Mesoscopic Atomic Ensembles,�?? Phys. Rev. Lett. 87, 037901-1-4 (2001). [CrossRef] [PubMed]
  20. M. V. Subbotin, V. I. Balykin, D. V. Laryushin, V. S. Letokhov, �??Laser controlled atom waveguide as a source of ultracold atoms,�?? Opt. Commun. 139, 107-116 (1997). [CrossRef]
  21. H. Nha and W. Jhe, �??Sisyphus cooling on the surface of a hollow-mirror atom trap,�?? Phys. Rev. A 56, 729-736 (1997). [CrossRef]
  22. J. Yin, Y. Zhu, Y. Wang, �??Gravito-optical trap for cold atoms with doughnut-hollow-beam cooling,�?? Phys. Lett. A 248, 309-318 (1998). [CrossRef]
  23. I. Manek, Yu. B. Ovchinnikov and R. Grimm, �??Generation of a hollow laser beam for atom trapping using an axicon,�?? Opt. Commun. 147, 67-70 (1998). [CrossRef]
  24. D. J. Harris and C. M. Savage, �??Atomic gravitational cavities from hollow optical fibers,�?? Phys. Rev. A 51, 3967-3971 (1995). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1. Fig. 2. Fig. 3.

Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited