OSA's Digital Library

Optics Express

Optics Express

  • Editor: Michael Duncan
  • Vol. 11, Iss. 16 — Aug. 11, 2003
  • pp: 1876–1886

Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity

C. Neipp, A. Beléndez, J. T. Sheridan, J. V. Kelly, F. T. O’Neill, S. Gallego, M. Ortuño, and I. Pascual  »View Author Affiliations


Optics Express, Vol. 11, Issue 16, pp. 1876-1886 (2003)
http://dx.doi.org/10.1364/OE.11.001876


View Full Text Article

Enhanced HTML    Acrobat PDF (197 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The nonlocal diffusion model proposed by Sheridan and coworkers has provided a useful interpretation of the nature of grating formation inside photopolymer materials. This model accounts for some important experimental facts, such as the cut-off of diffraction efficiency for high spatial frequencies. In this article we examine the predictions of the model in the case of a general dependence of the polymerisation rate with respect to the intensity pattern. The effects of this dependence on the different harmonic components of the polymerisation concentration will be investigated. The influence of the visibility on the different harmonic components will also be studied. These effects are compared to the effects of varying RD and σD .

© 2003 Optical Society of America

OCIS Codes
(090.0090) Holography : Holography
(090.2900) Holography : Optical storage materials
(090.7330) Holography : Volume gratings

ToC Category:
Research Papers

History
Original Manuscript: July 1, 2003
Revised Manuscript: July 26, 2003
Published: August 11, 2003

Citation
C. Neipp, A. Beléndez, J. Sheridan, J. Kelly, F. O'Neill, S. Gallego, M. Ortuño, and I. Pascual, "Non-local polymerization driven diffusion based model: general dependence of the polymerization rate to the exposure intensity," Opt. Express 11, 1876-1886 (2003)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-11-16-1876


Sort:  Journal  |  Reset  

References

  1. J. R. Lawrence, F. T. O�??Neill, J. T. Sheridan, �??Photopolymer holographic recording material,�?? Optik (Stuttgart, The International Journal for Light and Electron Optics) 112, 449-463 (2001). [CrossRef]
  2. S. Blaya, L. Carretero, R. Mallavia, A. Fimia, M Ulibarrena and D. Levy, �??Optimization of an acrylamidebased dry film used for holographic recording,�?? Appl. Opt. 37, 7604 (1998). [CrossRef]
  3. C. García, A. Fimia, I. Pascual, �??Holographic behavior of a photopolymer at high thicknesses and high monomer concentrations: mechanism of polymerization,�?? Appl. Phys. B 72, 311-316 (2001). [CrossRef]
  4. R. R. Adhami, D. J. Lanteigne, D. A. Gregory, �??Photopolymer hologram formation theory,�?? Microwave Opt. Technol. Lett. 4, 106-109 (1991). [CrossRef]
  5. G. Zhao, P. Mouroulis, �??Diffusion model of hologram formation in dry photopolymer materials,�?? J. Mod. Opt. 41, 1929-1939 (1994). [CrossRef]
  6. S. Piazzolla, B. Jenkins, �??Holographic grating formation in photopolymers,�?? Opt. Lett. 21, 1075-1077 (1996). [CrossRef] [PubMed]
  7. V. L. Colvin, R. G. Larson, A. L. Harris, M. L. Schilling, �??Quantitative model of volume hologram formation in photopolymers,�?? J. Appl. Phys. 81, 5913-5923 (1997). [CrossRef]
  8. I. Aubrecht, M. Miler, I. Koudela, �??Recording of holographic diffraction gratings in photopolymers: theoretical modelling and real-time monitoring of grating growth,�?? J. Mod. Opt. 45, 1465-1477 (1998). [CrossRef]
  9. J. H. Kwon, H. C. Chang and K. C. Woo, �??Analysis of temporal behavior of beams diffracted by volume gratings formed in photopolymers,�?? J. Opt. Soc. Am. B 16, 1651-1657 (1999). [CrossRef]
  10. G. M. Karpov, V. V. Obukhovsky, T. N. Smirnova, V. V. Lemeshko, �??Spatial transfer of matter as a method of holographic recording in photoformers,�?? Opt. Commun. 174, 391-404 (2000). [CrossRef]
  11. J. T. Sheridan, J. R. Lawrence, �??Non-local response diffusion model of holographic recording in photopolymer,�?? J. Opt. Soc. Am. A 17, 1108-1114 (2000). [CrossRef]
  12. J. T. Sheridan, M. Downey, F. T. O�??Neill, �??Diffusion based model of holographic grating formation in photopolymers: Generalised non-local material responses,�?? J. Opt. A: Pure and Appl. Opt. 3, 477-488 (2001). [CrossRef]
  13. J. R. Lawrence, F. T. O�??Neill, J. T. Sheridan, �??Adjusted intensity non-local diffusion model of photopolymer grating formation,�?? J. Opt. Soc. Am. B 19, 621-629 (2002). [CrossRef]
  14. C. Neipp, S. Gallego, M. Ortuño, A. Márquez, M. �?lvarez, A. Beléndez and I. Pascual, �??Fist harmonic diffusion based model applied to PVA/acrylamide based photopolymer,�?? J. Opt. Am. B (in press).
  15. S. Wu and E. N. Glytsis, �??Holographic grating formation in photopolymers: analysis and experimental results based on a nonlocal diffusion model and rigorous coupled-wave analysis,�?? J. Opt. Soc. Am. B. 20, 1177-1188 (2003). [CrossRef]
  16. G. Zhao, P. Mouroulis, �??Extension of a diffusion model for holographic photopolymers,�?? J. Mod. Opt. 42, 2571-2573 (1995). [CrossRef]
  17. F. T. O�??Neill, J. R. Lawrence, J. T. Sheridan, �??Comparison of holographic photopolymer materials using analytic non-local diffusion models,�?? Appl. Opt. 41, 845-852 (2002). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited